

Basic Polynomial Algebra Subprograms
$\begin{array}{ccc}\text { Changbo Chen }{ }^{1} & \text { Svyatoslav Covanov }{ }^{2,3} & \text { Farnam Mansouri }{ }^{2} \\ \text { Marc Moreno Maza }{ }^{2} & \text { Ning Xie } & \text { Yuzhen Xie }^{2}\end{array}$
${ }^{1}$ Chinese Academy of Sciences, China
${ }^{2}$ University of Western Ontario, Canada
${ }^{3}$ École Polytechnique, France

ICMS, August 82014

Plan

(1) Overview

2 Code organization and user interface
(3) Core subprograms
(4) Applications

Overview: building blocks in scientific software

- No symbolic computation software dedicated to sequential polynomial arithmetic managed to play the unification role that the BLAS play in numerical linear algebra.
- Could this work in the case of hardware accelerators?
- How to benefit from other successful projects related to polynomial arithmetic, like FFTW, SPIRAL and GMP?

Overview: the Basic Polynomial Algebra Subprograms

Driving observation

\triangleright Polynomial multiplication and matrix multiplication are at the core of many algorithms in symbolic computation.
\triangleright Algebraic complexity is often estimated in terms of multiplication time. At the software level, this reduction to multiplication is also common (Magma, NTL, FLINT, ...).
\triangleright BPAS design follows the principle reducing everything to multiplication.

Targeted functionalities

Level 1: core routines specific to a coefficient ring or a polynomial representation: multi-dimensional FFTs, SLP operations, ...

Level 2: basic arithmetic operations for dense or sparse polynomials with coefficients in \mathbb{Z}, \mathbb{Q} or $\mathbb{Z} / p \mathbb{Z}$: polynomial multiplication, Taylor shift, \ldots

Level 3: advanced arithmetic operations taking as input a zero-dimensional regular chains: normal form of a polynomial, multivariate real root isolation, ...

Overview: targeted architectures

- The BPAS library http://www.bpaslib.org is written in C++ with CilkPlus http://www.cilkplus.org/ extension targeting multi-cores.
- Programs on multi-core processors can be written in CilkPlus or OpenMP. Our Meta_Fork framework http://www.metafork.org performs automatic translation between the two as well as conversions to $\mathrm{C} / \mathrm{C}++$.
- Graphics Processing Units (GPUs) with code written in CUDA, provided by the CUMODP library http://www. cumodp.org.
- Unifying code for both multi-core processors and GPUs is conceivable (see the SPIRAL project) but highly complex (multi-core processors enforce memory consistency while GPUs do not, etc.)

Overview: implementation techniques

Level 1: core routines

- code is highly optimized in terms of work, data locality and parallelism,
- automatic code generation is used at library installation time.

Level 2: basic arithmetic operations

- functions provide a variety of algorithmic solutions for a given operation,
- the user can choose between algorithms minimizing work or algorithms maximizing parallelism.
- Example: Schönaghe-Strassen, divide-and-conquer, k-way Toom-Cook and the two-convolution method for integer polynomial multiplication.

Level 3: advanced arithmetic operations

- functions combine several Level 2 algorithms for achieving a given task,
- this leads to adaptive algorithms that select appropriate Level 2 functions depending on available resources (number of cores, input data size).

Plan

(1) Overview

(2) Code organization and user interface
(3) Core subprograms
(4) Applications

Code organization

Subprojects

- Polynomial types with specified coefficient ring: ModularPolynomial/, IntegerPolynomial/ and RationalNumberPolynomial/.
- Polynomial types with unspecified coefficient ring (template classes): Polynomial/.
- ModularPolynomial/ is based on the Modpn library and includes our FFT code generator, which is inspired by FFTW and SPIRAL.
- IntegerPolynomial/ relies on the GMP library.

User interface

- The UI currently exposes part of the polynomial types (the univariate ones and sparse multivariate polynomials)
- Exposing the other ones is work in progress.
- But the entire project is freely available in source at www.bpaslib.org.

User interface

- The above is a snapshot of the BPAS ring classes
- This shows two multivariate polynomial concrete classes, namely DistributedDenseMultivariateModularPolynomial<Field> and SMQP, and three univariate polynomial ones, namely DUZP, DUQP and SparseUnivariatePolynomial<Ring>.
- The BPAS classes Integer and RationalNumber are BPAS wrappers for GMP's mpz and mpq classes.
- Many other classes are provided like Intervals, RegularChains, \because

User interface: code example

```
#include <bpas.h>
int main (int argc, char *argv[] ) {
    DUZP a (4096), b (4096); // Initializing space
    for (int i = 0; i < 4096; + +i) { a.setCoefficient(i, rand()%1000+1); }
    for (int i = 0; i < 4096; ++i) { b.setCoefficient(i, rand()%1000+1); }
    DUZP c = (a^2) - (b^2), d= (a^3) - (b^3);
    DUZP g = c.gcd(d); // Gcd computation, g = a-b
    c /= g; // Exact division, c = a +b
    std::cout << "g = " < g << std::endl;
    DUQP p; // Initializing as a zero polyomial
    p = (p + mpq_class(1)<< 4095) + mpq_class(4095); // p = x 4095 + 4095
    Intervals boxes = p.realRootIsolation(0.5);
    std::cout << "boxes = " << boxes << std::endl;
    SMQP f(3),g(2); // Initializing with number of variables
    SMQP h = (f^2) + f**g* mpq_class(2) + (g^2);
    SparseUnivariatePolynomial<SMQP>s = h.convertToSUP("x");
    SMQP z (s);
    if (z != h) { std::cout << z<<" & " << h<<" should not differ "<< std::endl; }
    return 0;
}
```


Plan

(2) Code organization and user interface

(3) Core subprograms

4. Applications

Three core subprograms

- One-dimensional modular FFTs
- Parallel dense integer polynomial multiplication
- Parallel Taylor shift computation $f(x) \longmapsto f(x+1)$

1-D FFTs: classical cache friendly algorithm

Fits in cache


```
FFT([ \(\left.\left.a_{0}, a_{1}, \cdots, a_{n-1}\right], \omega\right)\)
    if \(n \leq\) HTHRESHOLD then
        ArrayBitReversal \(\left(a_{0}, a_{1}, \cdots, a_{n-1}\right)\)
        return FFT _iterative_in_cache([a \(\left.\left.a_{0}, a_{1}, \cdots, a_{n-1}\right], \omega\right)\)
    end if
    Shuffle \(\left(a_{0}, a_{1}, \cdots, a_{n-1}\right)\)
    \(\left[a_{0}, a_{1}, \cdots, a_{n / 2-1}\right]=\operatorname{FFT}\left(\left[a_{0}, a_{1}, \cdots, a_{n / 2-1}\right], \omega^{2}\right)\)
    \(\left[a_{n / 2}, a_{n / 2+1}, \cdots, a_{n-1}\right]=\operatorname{FFT}\left(\left[a_{n / 2}, a_{n / 2+1}, \cdots, a_{n-1}\right], \omega^{2}\right)\)
    return \(\left[a_{0}+a_{n / 2}, a_{1}+\omega \cdot a_{n / 2+1}, \cdots, a_{n / 2-1}-\omega^{n / 2-1} \cdot a_{n-1}\right]\)
```


Cache friendly 1-D FFT

- If the input vector does not fit in cache, a recursive algorithm is applied
- Once the vector fits in cache, an iterative algorithm (not requiring shuffling) takes over.
- On an ideal cache of Z words with L words per cache line this yields a cache complexity of $\Omega\left(n / L\left(\log _{2}(n)-\log _{2}(Z)\right)\right)$ which is not optimal.

1-D FFTs: cache complexity optimal algorithm


```
Fast Fourier Transform in R
    procedure FFT}((\mp@subsup{\alpha}{0}{},\mp@subsup{\alpha}{1}{}\ldots\mp@subsup{\alpha}{N-1}{}),\omega.N=J\cdotK,\Omega=\mp@subsup{\omega}{}{N/K}
    for 0}0k<K<<-1 d
        or 0}<\mp@subsup{k}{}{\prime}<J-1 d
            \gamma[k][k']=\alpha\mp@subsup{k}{}{\prime}K+k
        end for
        k]=FFT(\gamma[k],\mp@subsup{\omega}{}{K},J,\Omega
    end for
    DOuter transforms
        for 0}\leqk<K-1 d
            \delta|j][k]=c[k][j]*\mp@subsup{\omega}{}{jk}
        end for
        d[j] =FFT(\delta[j],\mp@subsup{\omega}{}{J},K,\Omega
        or 0}\leq\mp@subsup{j}{}{\prime}<K-1 d
            \beta}\mp@subsup{\beta}{\prime\prime}{\prime}+j=d[j][\mp@subsup{j}{}{\prime}
        end for
    end for
    return }b=(\mp@subsup{\beta}{0}{},\ldots,\mp@subsup{\beta}{N-1}{}
end procedure
```


Cache optimal 1-D FFT

- Instead of processing row-by-row, one computes as deep as possible while staying in cache (resp. registers): this yields a blocking strategy.
- On the left picture, assuming $Z=4$, on the first (resp, last) two rows, we successively compute the red, green, blue, orange 4-point blocks.
- On an ideal cache of Z words with L words per cache line the cache complexity drops to $O\left(n / L\left(\log _{2}(n) / \log _{2}(Z)\right)\right)$ which is optimal.

1-D FFTs in BPAS: putting Fürer's algorithm into practice


```
Second Strategy FFT
    procedure FFT (( }\mp@subsup{0}{0}{}\mp@subsup{\alpha}{1}{}\ldots\mp@subsup{\alpha}{N-1}{}),\omega,N=\mp@subsup{2}{}{k-j}\cdot\mp@subsup{2}{}{j},\Omega=\mp@subsup{\omega}{}{\mp@subsup{2}{}{i-j}})\quad\mathrm{ (DInner transforms
        for 0}\leq\mp@subsup{l}{}{\prime}<\mp@subsup{2}{}{k-j}-1 d
            \gamma[l][\mp@subsup{l}{}{\prime}]=\alpha\mp@subsup{\alpha}{\mp@subsup{l}{}{\prime}}{2j+l}
        end for
        cll]=FFT(\gamma[l],\mp@subsup{\omega}{}{K},\mp@subsup{2}{}{k-j},\Omega)
    end for
    for 0}\leqi<\mp@subsup{2}{}{k-j}-1\mathrm{ do
                                     Outer transforms
        for 0}\leql<\mp@subsup{2}{}{i}-1\mathrm{ do
            \delta[i][l]=c[l][i]*\mp@subsup{\omega}{}{il}\quad\Delta\mathrm{ Computation of coefficients}
            end for
            d[i]=FFT(\delta[i],\mp@subsup{\omega}{}{\mp@subsup{2}{}{k-j}},\mp@subsup{2}{}{j},\Omega)
            for 0}\leq\mp@subsup{i}{}{\prime}<\mp@subsup{2}{}{j}-1 d
                \beta}\mp@subsup{i}{i,2}{2n-j+i}=d[i][\mp@subsup{i}{}{\prime}
            end for
    end for
    return }b=(\mp@subsup{\beta}{0}{},\ldots,\mp@subsup{\beta}{N-1}{}
end procedure
```


Cache-and-work optimal 1-D FFT

- Modifying the previous blocking strategy such that each block is an FFT on 2^{K} points, for a given K (small in practice), and
- choosing a sparse radix prime p (like $p=r^{4}+1$, for $r=2^{16}-2^{8}$) such that multiplying by the twiddle factors is cheap enough,
- the algebraic complexity drops from $O\left(n \log _{2}(n)\right)$ to $O\left(n \log _{K}(n)\right)$ which is optimal on today's desktop computers.

1-D FFTs in BPAS

- In addition to the above optimal blocking strategy, instruction level parallelism (ILP) is carefully considered: vectorized instructions are explicitly used (SSE2, SSE4) and instruction pipeline usage is highly optimized.
- BPAS 1-D FFT code automatically generated by configurable Python scripts.

Figure: 1-D modular FFTs: Modpn (serial) vs BPAS (serial).

Parallel dense integer polynomial multiplication

Reducing to Schönaghe-Strassen algorithm via Kronecker's substitution (KS + SS)

0 Input: $f=\sum_{i=0}^{n} f_{i} x^{i}$ and $g=\sum_{i=0}^{m} g_{i} x^{i}$
1 Choose: $2^{\ell} \geq\|f\|_{\infty}+\|g\|_{\infty}+\max (n, m)+1$
2 Evaluation: $Z_{f}=\sum_{i=0}^{n} f_{i} 2^{i \ell}$ and $Z_{g}=\sum_{i=0}^{m} g_{i} 2^{i \ell}$;
3 Multiplying: $Z_{h}=Z_{f} \times Z_{g}$, using GMP library;
4 Unpacking: h_{i} from $Z_{h}=\sum_{i=0}^{n+m} h_{i} 2^{i \ell}$.
5 Return: $f g=\sum_{i=0}^{n+m} h_{i} x^{i}$

- its work in terms of bit operations is $\mathrm{O}\left(s \log _{2}(s) \log _{2}\left(\log _{2}(s)\right)\right)$, where s is the maximum bit-size of f or g;
- purely serial due to the difficulties of parallelizing 1-D FFTs on multicore processors.

Parallel dense integer polynomial multiplication

Divide-and-conquer algorithm with reduction to GMP's integer multiplication

1 Division: $f(x)=f_{0}(x)+f_{1}(x) x^{n / 2}$ and $g(x)=g_{0}(x)+g_{1}(x) x^{n / 2}$;
2 Execute recursively:
Store $f_{0} \times g_{0} \& f_{1} \times g_{1}$ in the result array;
Store $f_{0} \times g_{1} \& f_{1} \times g_{0}$ in the auxiliary arrays;
3 Addition: add the auxiliary arrays to the result one.

- use (one or) two levels of recursion, then use the $\mathrm{KS}+\mathrm{SS}$ algorithm;
- its work in terms of bit operations is $\mathrm{O}\left(s \log _{2}(s) \log _{2}\left(\log _{2}(s)\right)\right)$, where s is the maximum bit-size of f or g, but the constant has been multiplied approximately by 4 ;
- static parallelism (close to 16).

Parallel dense integer polynomial multiplication

k-way Toom-Cook algorithm

1 Division: $f(x)=f_{0}(x)+f_{1}(x) x^{n / k}+\cdots+f_{k-1}(x) x^{(k-1) n / k}$ and $g(x)=g_{0}(x)+g_{1}(x) x^{n / k}+\cdots+g_{k-1}(x) x^{(k-1) n / k}$;
2 Conversion: Set $X=x^{n / k}$ and obtain $F(X)=Z_{f_{0}}+Z_{f_{1}} X+\cdots+Z_{f_{k-1}} X^{k-1}$ and $G(X)=Z_{g_{0}}+Z_{g_{1}} X+\cdots+Z_{g_{k-1}} X^{k-1}$;
3 Evaluation: Evaluate f, g at $2 k-1$ points: $\left(0, X_{1}, \ldots, X_{2 k-3}, \infty\right)$;
4 Multiplying: $\left(w_{0}, \ldots, w_{2 k-2}\right)=(F(0) \cdot G(0), \ldots, F(\infty) \cdot G(\infty))$;
5 Interpolation: Recover $\left(Z_{h_{0}}, Z_{h_{1}}, \ldots, Z_{h_{2 k-2}}\right)$ where $H(X)=f(X) g(X)=Z_{h_{0}}+Z_{h_{1}} X+\cdots+Z_{h_{2 k-2}} X^{2 k-2}$
6 Conversion: Recover polynomial coefficients from $Z_{h_{0}}, \ldots, Z_{h_{2 k-2}}$, obtaining $h(x)=h_{0}(x)+h_{1}(x) x^{n / k}+\cdots+h_{2 k-2}(x) x^{(2 k-2) n / k}$.

- work in terms of bit operations is $\mathrm{O}\left(s \log _{2}(s) \log _{2}\left(\log _{2}(s)\right)\right)$, where s is the maximum bit-size of f or g, but the constant has been multiplied approximately by 2 for $k=8$;
- 4-way \& 8-way Toom-Cook are available;
- static parallelism (about 7 and 13 when $k=4$ and $k=8$, resp).

Parallel dense integer polynomial multiplication

A new algorithm: the two-convolution method

- work is $\mathrm{O}\left(s \log _{K}(s)\right)$, where s is the maximum bit-size of an input;
- parallelism is $\mathrm{O}\left(\frac{\sqrt{s}}{\log _{2}(s)}\right)$.

Parallel dense integer polynomial multiplication

1. Convert $a(y), b(y)$ to bivariate $A(x, y), B(x, y)$ s. t. $a(y)=A(\beta, y)$ and $b(y)=B(\beta, y)$ hold at $\beta=2^{M}, K=\operatorname{deg}(A, x)=\operatorname{deg}(B, x)$, where $K M$ is essentially the maximum bit size of a coefficient in a, b.
2. Consider $C^{+}(x, y) \equiv A(x, y) B(x, y) \bmod \left\langle x^{K}+1>\right.$ and $C^{-}(x, y) \equiv A(x, y) B(x, y) \bmod \left\langle x^{K}-1\right\rangle$, then compute $C^{+}(x, y)$ and $C^{-}(x, y)$ modulo machine-word primes so as to use efficient 2-D FFTs.
3. Consider $C(x, y)=\frac{C^{+}(x, y)}{2}\left(x^{K}-1\right)+\frac{C^{-}(x, y)}{2}\left(x^{K}+1\right)$, then evaluate $C(x, y)$ at $x=\beta$, which finally gives $c(y)=a(y) b(y)$.

Parallel dense integer polynomial multiplication

Our experimental results were obtained on an 48-core AMD Opteron 6168, running at 900 Mhz with 256 GB of RAM and 512 KB of L2 cache.

Size	Work $(\mathrm{KS}+\mathrm{SS})^{*}$	Work $\left(\mathrm{CVL}_{2}\right)^{*}$	${\text { Span }\left(\mathrm{CVL}_{2}\right)^{*}}^{\text {Work(CVL } 2)}$	$\frac{\text { Work(CVL } 2)}{\text { Span(CVL } 2)}$	Work(KS +SS$)$
2048	$795,549,545$	$1,364,160,088$	$41,143,119$	33.16	1.715
4096	$4,302,927,423$	$5,663,423,709$	$96,032,325$	58.97	1.316
8192	$16,782,031,611$	$23,827,123,688$	$292,735,521$	81.39	1.420
16384	$63,573,232,166$	$100,688,072,711$	$1,017,726,160$	98.93	1.584
32768	$269,887,534,779$	$425,149,529,176$	$3,804,178,563$	111.76	1.575

Table: Cilkview analysis of CVL_{2} and $\mathrm{KS}+\mathrm{SS}$. (* shows the number of instructions)

Parallel dense integer polynomial multiplication

Figure: BPAS (parallel) vs FLINT (serial) vs Maple 18 (serial) with the logarithmic scale in radix 2 of the maximum bit-size of an input polynomial as the horizontal axis.

Parallel dense integer polynomial multiplication

Figure: BPAS (parallel) vs FLINT (serial) vs Maple18 (serial) with the logarithmic scale in radix 2 of the maximum bit-size of an input polynomial as the horizontal axis.

Parallel dense integer polynomial multiplication

The adaptive algorithm based on the input size and available resources

- Very small: Plain multiplication
- Small or Single-core: KS+SS algorithm
- Big but a few cores: 4-way Toom-Cook
- Big: 8-way Toom-Cook
- Very big: Two-convolution method

Parallel Taylor shift $f(x) \longmapsto f(x+1)$

Parallel Pascals triangle by blocking

- Let n be the degree and ℓ be the maximum bit-size of a coefficient, the complexity in terms of bit operations: $\mathrm{O}\left(n^{2}(n+\ell)\right)$;
- highly effective when both the input data size and the number of available cores are small due to optimal cache complexity.

Parallel Taylor shift $f(x) \longmapsto f(x+1)$

Algorithm E in [2]: a divide-and-conquer procedure, relying on polynomial multiplication

$$
f_{0}
$$

- Let n be the degree and ℓ be the maximum bit-size of a coefficient, the complexity in terms of bit operations: $\mathrm{O}\left(\mathrm{M}\left(n^{2}+n \ell\right) \log n\right)$, where M is a multiplication time.
- effective when the two-convolution multiplication dominates its counterparts.
[2] J. von zur Gathen and J. Gerhard. Fast algorithms for Taylor shifts and certain difference equations. In ISSAC, pages 40-47, 1997.

$$
\begin{aligned}
& \left(f_{0}+f_{1}(x+1)\right)+\left(f_{2}+f_{3}(x+1)\right) \times(x+1)^{2} \\
& f_{1} \\
& f_{2}
\end{aligned}
$$

Parallel Taylor shift $f(x) \longmapsto f(x+1)$

The adaptive algorithm based on the input size

- Small: Parallel Pascals triangle
- Big: Algorithm E in [2], but for multiplication in small degree, using parallel Pascals triangle as the base case

A third alternative algorithm is work in progress.
[2] J. von zur Gathen and J. Gerhard. Fast algorithms for Taylor shifts and certain difference equations. In ISSAC, pages 40-47, 1997.

Plan

(1) Overview

2 Code organization and user interface
(3) Core subprograms

(4) Applications

Applications

- Parallel univariate real root isolation
- Parallel multivariate real root isolation
- Symbolic integration

Parallel univariate real root isolation

Input: A univariate squarefree polynomial $f(x)=c_{d} x^{d}+\cdots+c_{1} x+c_{0}$ with rational number coefficients

Output: A list of pairwise disjoint intervals $\left[a_{1}, b_{1}\right], \ldots,\left[a_{e}, b_{e}\right]$ with rational endpoints such that

- each real root of $f(x)$ is contained in one and only one $\left[a_{i}, b_{i}\right]$;
- if $a_{i}=b_{i}$, the real root $x_{i}=a_{i}\left(b_{i}\right)$; otherwise, the real root $a_{i}<x_{i}<b_{i}(f(x)$ doesn't vanish at either endpoint).
$f(x)$

Parallel univariate real root isolation

Figure: Parallel Vincent-Collins-Akritas (VCA, 1976)

- The most costly operation is the Taylor Shift operation, that is, the map $f(x) \longmapsto f(x+1)$.

Parallel univariate real root isolation

We run two parallel real root algorithms, BPAS and CMY [3], which are both implemented in CilkPlus, against Maple 18 serial realroot command (interface of the RUR-based code implemented in C by F. Rouillier) which implements a state-of-the-art algorithm.

	Size	BPAS (Parallel)	CMY [3] (Parallel)	realroot (Serial)	$\frac{T_{\text {CMY }}}{T_{\text {BPAS }}}$	$\frac{I_{\text {realroot }}}{T_{\mathrm{BPAS}}}$	\#Roots
Cnd	32768	18.141	125.902	816.134	6.94	44.99	1
	65536	66.436	664.438	$7,526.428$	10.0	113.29	1
Chebycheff	2048	608.738	594.82	$1,378.444$	0.98	2.26	2047
	4096	$8,194.06$	10,014	$35,880.069$	1.22	4.38	4095
Laguerre	2048	$1,336.14$	$1,324.33$	$3,706.749$	0.99	2.77	2047
	4096	$20,727.9$	$23,605.7$	$91,668.577$	1.14	4.42	4095
Wilkinson	2048	630.481	614.94	$1,031.36$	0.98	1.64	2047
	4096	$9,359.25$	$10,733.3$	$26,496.979$	1.15	2.83	4095

Table: Running time (in sec.) on a 48-core AMD Opteron 6168 node for four examples.
[3] C. Chen, M. Moreno Maza, and Y. Xie. Cache complexity and multicore implementation for univariate real root isolation. J. of Physics: Conf. Series, 341, 2011.

Parallel multivariate real root isolation

Example	BPAS (parallel)	RealRootlsolate (serial)	Isolate (serial)	Speedup
4-Body-Homog	0.402	0.608	0.382	
Arnborg-Lazard	0.146	0.299	0.066	
Caprasse	0.018	0.14	0.154	7.778
Circles	0.051	0.894	0.814	15.961
Cyclic-5	0.021	0.147	0.206	9.810
Czapor-Geddes-Wang	0.2	0.135	0.184	
D2v10	0.029	0.075	177.999	2.586
D4v5	0.037	0.044	49.09	1.189
Fabfaux	0.192	0.231	0.071	
Katsura-4	0.171	0.416	0.044	
L-3	0.02	0.252	0.12	6.0
Neural-Network	0.029	0.332	0.131	4.517
R-6	0.014	0.048	20.612	3.429
Rose	0.026	0.336	0.599	12.923
Takeuchi-Lu	0.027	0.16	0.031	1.148
Wilkinsonxy	0.023	0.165	0.046	2.0
Nld-10-3	1.249	8.993	707.334	7.20

Table: Running time (in sec.) on a 12-core Intel Xeon 5650 node for BPAS vs. Maple 17 RealRootlsolate vs. C (with Maple 17 interface) Isolate.

Symbolic integration

R. H. C. Moir, R. M. Corless, and D. J. Jeffrey (2014, July) present an implementation based on the BPAS library, computing

$$
F(x)=\int f(x) d x
$$

For instance, it evaluates $\int \frac{x^{4}-3 x^{2}+6}{x^{6}-5 x^{4}+5 x^{2}+4} d x=\operatorname{invtan}\left(x^{3}-3 x, x^{2}-2\right)$.

$$
\begin{aligned}
& \text { / } 6-3 * x^{\wedge} 2+1 * x^{\wedge} 4 \\
& \text { | ------------------- } d x= \\
& \text { / } 4+5 * x^{\wedge} 2-5 * x^{\wedge} 4+1 * x^{\wedge} 6 \\
& a * \log \left((-2)+(6 * a) * x+(1) * x^{\wedge} 2+(-2 * a) * x^{\wedge} 3\right) \\
& \text { a|1/4+1*a^2=0 }
\end{aligned}
$$

Concluding remarks

- The BPAS library is the first polynomial algebra library which emphasizes performance aspects (cache complexity, parallelism) on multi-core architectures
- Its core operations (dense integer polynomial multiplication, real root isolation) outperform their counterparts in recognized computer algebra software (FLINT, Maple)
- Its companion library CUDA Modular Polynomial (CUMODP) has similar goals on GPGPUs www.cumodp.org
- Together, they are designed to support the implementation of polynomial system solvers on hardware accelerators.
- The BPAS library is available in source at www.bpaslib.org

