
The BPAS Library

Changbo Chen1 Svyatoslav Covanov2,3 Farnam Mansouri2
Marc Moreno Maza2 Ning Xie2 Yuzhen Xie2

1Chinese Academy of Sciences, China
2University of Western Ontario, Canada

3École Polytechnique, France

ICMS, August 8 2014

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 1 / 36



Plan

1 Overview

2 Code organization and user interface

3 Core subprograms

4 Applications

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 2 / 36



Overview: building blocks in scientific software

▸ No symbolic computation software dedicated to sequential polynomial
arithmetic managed to play the unification role that the BLAS play in
numerical linear algebra.

▸ Could this work in the case of hardware accelerators?
▸ How to benefit from other successful projects related to polynomial
arithmetic, like FFTW, SPIRAL and GMP?

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 3 / 36



Overview: the Basic Polynomial Algebra Subprograms

Driving observation
⊳ Polynomial multiplication and matrix multiplication are at the core of many
algorithms in symbolic computation.

⊳ Algebraic complexity is often estimated in terms of multiplication time. At the
software level, this reduction to multiplication is also common (Magma, NTL,
FLINT, . . . ).

⊳ BPAS design follows the principle reducing everything to multiplication.

Targeted functionalities
Level 1: core routines specific to a coefficient ring or a polynomial representation:
multi-dimensional FFTs, SLP operations, . . .

Level 2: basic arithmetic operations for dense or sparse polynomials with
coefficients in Z, Q or Z/pZ: polynomial multiplication, Taylor shift, . . .

Level 3: advanced arithmetic operations taking as input a zero-dimensional
regular chains: normal form of a polynomial, multivariate real root isolation, . . .

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 4 / 36



Overview: targeted architectures

▸ The BPAS library http://www.bpaslib.org is written in C++ with
CilkPlus http://www.cilkplus.org/ extension targeting multi-cores.

▸ Programs on multi-core processors can be written in CilkPlus or OpenMP.
Our Meta_Fork framework http://www.metafork.org performs automatic
translation between the two as well as conversions to C/C++.

▸ Graphics Processing Units (GPUs) with code written in CUDA, provided by
the CUMODP library http://www.cumodp.org.

▸ Unifying code for both multi-core processors and GPUs is conceivable (see
the SPIRAL project) but highly complex (multi-core processors enforce
memory consistency while GPUs do not, etc.)

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 5 / 36

http://www.bpaslib.org
http://www.cilkplus.org/
http://www.metafork.org
http://www.cumodp.org


Overview: implementation techniques

Level 1: core routines
▸ code is highly optimized in terms of work, data locality and parallelism,
▸ automatic code generation is used at library installation time.

Level 2: basic arithmetic operations
▸ functions provide a variety of algorithmic solutions for a given operation,
▸ the user can choose between algorithms minimizing work or algorithms
maximizing parallelism.

▸ Example: Schönaghe-Strassen, divide-and-conquer, k-way Toom-Cook and
the two-convolution method for integer polynomial multiplication.

Level 3: advanced arithmetic operations
▸ functions combine several Level 2 algorithms for achieving a given task,
▸ this leads to adaptive algorithms that select appropriate Level 2 functions
depending on available resources (number of cores, input data size).

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 6 / 36



Plan

1 Overview

2 Code organization and user interface

3 Core subprograms

4 Applications

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 7 / 36



Code organization

Subprojects
▸ Polynomial types with specified coefficient ring: ModularPolynomial/,

IntegerPolynomial/ and RationalNumberPolynomial/.
▸ Polynomial types with unspecified coefficient ring (template classes):

Polynomial/.
▸ ModularPolynomial/ is based on the Modpn library and includes our FFT
code generator, which is inspired by FFTW and SPIRAL.

▸ IntegerPolynomial/ relies on the GMP library.

User interface
▸ The UI currently exposes part of the polynomial types (the univariate ones
and sparse multivariate polynomials)

▸ Exposing the other ones is work in progress.
▸ But the entire project is freely available in source at www.bpaslib.org.

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 8 / 36

www.bpaslib.org


User interface

▸ The above is a snapshot of the BPAS ring classes
▸ This shows two multivariate polynomial concrete classes, namely

DistributedDenseMultivariateModularPolynomial<Field> and SMQP,
and three univariate polynomial ones, namely DUZP, DUQP and
SparseUnivariatePolynomial<Ring>.

▸ The BPAS classes Integer and RationalNumber are BPAS wrappers for
GMP’s mpz and mpq classes.

▸ Many other classes are provided like Intervals, RegularChains, ...
Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 9 / 36



User interface: code example

#include <bpas.h>

int main (int argc, char *argv[] ) {
DUZP a (4096), b (4096); // Initializing space
for (int i = 0; i < 4096; ++i) { a.setCoefficient(i, rand()%1000+1); }
for (int i = 0; i < 4096; ++i) { b.setCoefficient(i, rand()%1000+1); }
DUZP c = (a∧2) - (b∧2), d = (a∧3) - (b∧3);
DUZP g = c.gcd(d); // Gcd computation, g = a − b
c /= g; // Exact division, c = a + b
std::cout ≪ "g = " ≪ g ≪ std::endl;

DUQP p; // Initializing as a zero polyomial
p = (p + mpq_class(1) ≪ 4095) + mpq_class(4095); // p = x4095 + 4095
Intervals boxes = p.realRootIsolation(0.5);
std::cout ≪ "boxes = " ≪ boxes ≪ std::endl;

SMQP f(3), g(2); // Initializing with number of variables
SMQP h = (f∧2) + f * g * mpq_class(2) + (g∧2);
SparseUnivariatePolynomial<SMQP> s = h.convertToSUP("x");
SMQP z (s);
if (z != h) { std::cout ≪ z ≪ " & " ≪ h ≪ " should not differ " ≪ std::endl; }

return 0;
}

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 10 / 36



Plan

1 Overview

2 Code organization and user interface

3 Core subprograms

4 Applications

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 11 / 36



Three core subprograms

▸ One-dimensional modular FFTs
▸ Parallel dense integer polynomial multiplication
▸ Parallel Taylor shift computation f (x)z→ f (x + 1)

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 12 / 36



1-D FFTs: classical cache friendly algorithm

Cache friendly 1-D FFT
▸ If the input vector does not fit in cache, a recursive algorithm is applied
▸ Once the vector fits in cache, an iterative algorithm (not requiring shuffling)
takes over.

▸ On an ideal cache of Z words with L words per cache line this yields a cache
complexity of Ω(n/L(log2(n)− log2(Z))) which is not optimal.

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 13 / 36



1-D FFTs: cache complexity optimal algorithm

Cache optimal 1-D FFT
▸ Instead of processing row-by-row, one computes as deep as possible while
staying in cache (resp. registers): this yields a blocking strategy.

▸ On the left picture, assuming Z = 4, on the first (resp, last) two rows, we
successively compute the red, green, blue, orange 4-point blocks.

▸ On an ideal cache of Z words with L words per cache line the cache
complexity drops to O(n/L(log2(n)/ log2(Z))) which is optimal.

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 14 / 36



1-D FFTs in BPAS: putting Fürer’s algorithm into practice

Cache-and-work optimal 1-D FFT
▸ Modifying the previous blocking strategy such that each block is an FFT on
2K points, for a given K (small in practice), and

▸ choosing a sparse radix prime p (like p = r4 + 1, for r = 216 − 28) such that
multiplying by the twiddle factors is cheap enough,

▸ the algebraic complexity drops from O(n log2(n)) to
O(n logK(n)) which is optimal on today’s desktop computers.

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 15 / 36



1-D FFTs in BPAS

▸ In addition to the above optimal blocking strategy, instruction level
parallelism (ILP) is carefully considered: vectorized instructions are explicitly
used (SSE2, SSE4) and instruction pipeline usage is highly optimized.

▸ BPAS 1-D FFT code automatically generated by configurable Python scripts.

Figure: 1-D modular FFTs: Modpn (serial) vs BPAS (serial).

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 16 / 36



Parallel dense integer polynomial multiplication

Reducing to Schönaghe-Strassen algorithm via Kronecker’s
substitution (KS+SS)

0 Input: f = ∑n
i=0 fi x i and g = ∑m

i=0 gi x i

1 Choose: 2` ≥ ∣∣f ∣∣∞ + ∣∣g ∣∣∞ +max(n,m) + 1
2 Evaluation: Zf = ∑n

i=0 fi 2i` and Zg = ∑m
i=0 gi 2i`;

3 Multiplying: Zh = Zf × Zg , using GMP library;
4 Unpacking: hi from Zh = ∑n+m

i=0 hi 2i`.
5 Return: f g = ∑n+m

i=0 hi x i

▸ its work in terms of bit operations is O(s log2(s) log2(log2(s))), where s is
the maximum bit-size of f or g ;

▸ purely serial due to the difficulties of parallelizing 1-D FFTs on multicore
processors.

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 17 / 36



Parallel dense integer polynomial multiplication

Divide-and-conquer algorithm with reduction to GMP’s integer
multiplication

1 Division: f (x) = f0(x) + f1(x) xn/2 and g(x) = g0(x) + g1(x) xn/2;
2 Execute recursively:

Store f0 × g0 & f1 × g1 in the result array;
Store f0 × g1 & f1 × g0 in the auxiliary arrays;

3 Addition: add the auxiliary arrays to the result one.

▸ use (one or) two levels of recursion, then use the KS+SS algorithm;
▸ its work in terms of bit operations is O(s log2(s) log2(log2(s))), where s is
the maximum bit-size of f or g , but the constant has been multiplied
approximately by 4;

▸ static parallelism (close to 16).

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 18 / 36



Parallel dense integer polynomial multiplication

k-way Toom-Cook algorithm
1 Division: f (x) = f0(x) + f1(x) xn/k + ⋅ ⋅ ⋅ + fk−1(x) x (k−1)n/k and

g(x) = g0(x) + g1(x) xn/k + ⋅ ⋅ ⋅ + gk−1(x) x (k−1)n/k ;
2 Conversion: Set X = xn/k and obtain F(X) = Zf0 + Zf1 X + ⋅ ⋅ ⋅ + Zfk−1 X k−1

and G(X) = Zg0 + Zg1 X + ⋅ ⋅ ⋅ + Zgk−1 X k−1;
3 Evaluation: Evaluate f , g at 2 k − 1 points: (0,X1, . . . ,X2 k−3,∞);
4 Multiplying: (w0, . . . ,w2 k−2) = (F(0) ⋅G(0), . . . ,F(∞) ⋅G(∞));
5 Interpolation: Recover (Zh0 ,Zh1 , . . . ,Zh2 k−2) where

H(X) = f (X)g(X) = Zh0 + Zh1 X + ⋅ ⋅ ⋅ + Zh2 k−2 X 2 k−2

6 Conversion: Recover polynomial coefficients from Zh0 , . . . ,Zh2 k−2 , obtaining
h(x) = h0(x) + h1(x) xn/k + ⋅ ⋅ ⋅ + h2 k−2(x) x (2 k−2)n/k .

▸ work in terms of bit operations is O(s log2(s) log2(log2(s))), where s is the
maximum bit-size of f or g , but the constant has been multiplied
approximately by 2 for k = 8;

▸ 4-way & 8-way Toom-Cook are available;
▸ static parallelism (about 7 and 13 when k = 4 and k = 8, resp).

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 19 / 36



Parallel dense integer polynomial multiplication
A new algorithm: the two-convolution method

▸ work is O(s logK(s)), where s is the maximum bit-size of an input;
▸ parallelism is O(

√
s

log2(s) ).
Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 20 / 36



Parallel dense integer polynomial multiplication

1. Convert a(y), b(y) to bivariate A(x , y), B(x , y) s. t. a(y) = A(β, y) and
b(y) = B(β, y) hold at β = 2M , K = deg(A, x) = deg(B, x), where K M is
essentially the maximum bit size of a coefficient in a, b.

2. Consider C+(x , y) ≡ A(x , y)B(x , y) mod < xK + 1 > and
C−(x , y) ≡ A(x , y)B(x , y) mod < xK − 1 >, then compute C+(x , y) and
C−(x , y) modulo machine-word primes so as to use efficient 2-D FFTs.

3. Consider C(x , y) = C+(x ,y)
2 (xK − 1) + C−(x ,y)

2 (xK + 1), then evaluate C(x , y)
at x = β, which finally gives c(y) = a(y)b(y).

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 21 / 36



Parallel dense integer polynomial multiplication

Our experimental results were obtained on an 48-core AMD Opteron 6168,
running at 900Mhz with 256 GB of RAM and 512KB of L2 cache.

Size Work(KS+SS)∗ Work(CVL2)∗ Span(CVL2)∗ Work(CVL2)
Span(CVL2)

Work(CVL2)
Work(KS+SS)

2048 795,549,545 1,364,160,088 41,143,119 33.16 1.715
4096 4,302,927,423 5,663,423,709 96,032,325 58.97 1.316
8192 16,782,031,611 23,827,123,688 292,735,521 81.39 1.420
16384 63,573,232,166 100,688,072,711 1,017,726,160 98.93 1.584
32768 269,887,534,779 425,149,529,176 3,804,178,563 111.76 1.575

Table: Cilkview analysis of CVL2 and KS+SS. (∗ shows the number of instructions)

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 22 / 36



Parallel dense integer polynomial multiplication

Figure: BPAS (parallel) vs FLINT (serial) vs Maple 18 (serial) with the logarithmic scale in
radix 2 of the maximum bit-size of an input polynomial as the horizontal axis.

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 23 / 36



Parallel dense integer polynomial multiplication

Figure: BPAS (parallel) vs FLINT (serial) vs Maple18 (serial) with the logarithmic scale in radix
2 of the maximum bit-size of an input polynomial as the horizontal axis.

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 24 / 36



Parallel dense integer polynomial multiplication

The adaptive algorithm based on the input size and available resources
▸ Very small: Plain multiplication
▸ Small or Single-core: KS+SS algorithm
▸ Big but a few cores: 4-way Toom-Cook
▸ Big: 8-way Toom-Cook
▸ Very big: Two-convolution method

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 25 / 36



Parallel Taylor shift f (x)z→ f (x + 1)

Parallel Pascals triangle by blocking
0 0 . . . 0 0
↓ ↓ ↓ ↓

fd → + → + → . . . → + → + → gd
↓ ↓ ↓

fd−1 → + → + → . . . → + → gd−1
⋮

↓ ↓
f1 → + → + → g1

↓
f0 → + → g0

▸ Let n be the degree and ` be the maximum bit-size of a coefficient, the
complexity in terms of bit operations: O(n2(n + `));

▸ highly effective when both the input data size and the number of available
cores are small due to optimal cache complexity.

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 26 / 36



Parallel Taylor shift f (x)z→ f (x + 1)

Algorithm E in [2]: a divide-and-conquer procedure, relying on
polynomial multiplication

(f0 + f1(x + 1)) + (f2 + f3(x + 1)) × (x + 1)2
↗ ↖

f0 + f1(x + 1) f2 + f3(x + 1)
↗ ↖ ↗ ↖

f0 f1 f2 f3

▸ Let n be the degree and ` be the maximum bit-size of a coefficient, the
complexity in terms of bit operations: O(M(n2 + n `) log n), where M is a
multiplication time.

▸ effective when the two-convolution multiplication dominates its counterparts.
[2] J. von zur Gathen and J. Gerhard. Fast algorithms for Taylor shifts and certain difference equations. In
ISSAC, pages 40–47, 1997.

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 27 / 36



Parallel Taylor shift f (x)z→ f (x + 1)

The adaptive algorithm based on the input size
▸ Small: Parallel Pascals triangle
▸ Big: Algorithm E in [2], but for multiplication in small degree, using parallel
Pascals triangle as the base case

A third alternative algorithm is work in progress.

[2] J. von zur Gathen and J. Gerhard. Fast algorithms for Taylor shifts and certain difference equations. In
ISSAC, pages 40–47, 1997.

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 28 / 36



Plan

1 Overview

2 Code organization and user interface

3 Core subprograms

4 Applications

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 29 / 36



Applications

▸ Parallel univariate real root isolation
▸ Parallel multivariate real root isolation
▸ Symbolic integration

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 30 / 36



Parallel univariate real root isolation

Input: A univariate squarefree polynomial f (x) = cd xd +⋯ + c1 x + c0 with
rational number coefficients

Output: A list of pairwise disjoint intervals [a1,b1], . . . , [ae ,be] with rational
endpoints such that

▸ each real root of f (x) is contained in one and only one [ai ,bi];
▸ if ai = bi , the real root xi = ai(bi); otherwise, the real root ai < xi < bi (f (x)
doesn’t vanish at either endpoint).

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 31 / 36



Parallel univariate real root isolation

Figure: Parallel Vincent-Collins-Akritas (VCA, 1976)

▸ The most costly operation is the Taylor Shift operation, that is, the map
f (x)z→ f (x + 1).

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 32 / 36



Parallel univariate real root isolation
We run two parallel real root algorithms, BPAS and CMY [3], which are both
implemented in CilkPlus, against Maple 18 serial realroot command (interface of
the RUR-based code implemented in C by F. Rouillier) which implements a
state-of-the-art algorithm.

Size BPAS CMY [3] realroot TCMY
TBPAS

Trealroot
TBPAS

#Roots
(Parallel) (Parallel) (Serial)

Cnd 32768 18.141 125.902 816.134 6.94 44.99 1
65536 66.436 664.438 7,526.428 10.0 113.29 1

Chebycheff 2048 608.738 594.82 1,378.444 0.98 2.26 2047
4096 8,194.06 10,014 35,880.069 1.22 4.38 4095

Laguerre 2048 1,336.14 1,324.33 3,706.749 0.99 2.77 2047
4096 20,727.9 23,605.7 91,668.577 1.14 4.42 4095

Wilkinson 2048 630.481 614.94 1,031.36 0.98 1.64 2047
4096 9,359.25 10,733.3 26,496.979 1.15 2.83 4095

Table: Running time (in sec.) on a 48-core AMD Opteron 6168 node for four examples.

[3] C. Chen, M. Moreno Maza, and Y. Xie. Cache complexity and multicore implementation for univariate real
root isolation. J. of Physics: Conf. Series, 341, 2011.

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 33 / 36



Parallel multivariate real root isolation

Example BPAS RealRootIsolate Isolate Speedup
(parallel) (serial) (serial)

4-Body-Homog 0.402 0.608 0.382
Arnborg-Lazard 0.146 0.299 0.066

Caprasse 0.018 0.14 0.154 7.778
Circles 0.051 0.894 0.814 15.961

Cyclic-5 0.021 0.147 0.206 9.810
Czapor-Geddes-Wang 0.2 0.135 0.184

D2v10 0.029 0.075 177.999 2.586
D4v5 0.037 0.044 49.09 1.189

Fabfaux 0.192 0.231 0.071
Katsura-4 0.171 0.416 0.044

L-3 0.02 0.252 0.12 6.0
Neural-Network 0.029 0.332 0.131 4.517

R-6 0.014 0.048 20.612 3.429
Rose 0.026 0.336 0.599 12.923

Takeuchi-Lu 0.027 0.16 0.031 1.148
Wilkinsonxy 0.023 0.165 0.046 2.0

Nld-10-3 1.249 8.993 707.334 7.20

Table: Running time (in sec.) on a 12-core Intel Xeon 5650 node for BPAS vs. Maple 17
RealRootIsolate vs. C (with Maple 17 interface) Isolate.

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 34 / 36



Symbolic integration

R. H. C. Moir, R. M. Corless, and D. J. Jeffrey (2014, July) present an
implementation based on the BPAS library, computing

F(x) = ∫ f (x)dx .

For instance, it evaluates ∫ x4−3 x2+6
x6−5 x4+5 x2+4 dx = invtan(x3 − 3 x , x2 − 2).

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 35 / 36



Concluding remarks

▸ The BPAS library is the first polynomial algebra library which
emphasizes performance aspects (cache complexity, parallelism) on
multi-core architectures

▸ Its core operations (dense integer polynomial multiplication, real root
isolation) outperform their counterparts in recognized computer
algebra software (FLINT, Maple)

▸ Its companion library CUDA Modular Polynomial (CUMODP) has
similar goals on GPGPUs www.cumodp.org

▸ Together, they are designed to support the implementation of
polynomial system solvers on hardware accelerators.

▸ The BPAS library is available in source at www.bpaslib.org

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie, Yuzhen Xie (CIGIT, UWO)The BPAS Library ICMS, August 8 2014 36 / 36

http://www.cumodp.org
http://www.bpaslib.org

	Overview
	Code organization and user interface
	Core subprograms
	Applications

