
Employing C++ Templates in the Design of a

Computer Algebra Library

Alexander Brandt1, Robert H.C. Moir2, Marc Moreno Maza3

Department of Computer Science, The University of Western Ontario,
London, Canada

1 abrandt5@uwo.ca, 2 rmoir3@uwo.ca, 3 moreno@csd.uwo.ca

Abstract

We discuss design aspects of the open-source Basic Polynomial Algebra
Subprograms (BPAS) library. We build on standard C++11 template mech-
anisms to improve ease of use and accessibility. The BPAS computer alge-
bra library looks to enable end-users to do work more easily and efficiently
through optimized C code wrapped in an object-oriented and user-friendly
C++ interface. Two key aspects of this interface to be discussed are the
encoding of the algebraic hierarchy as a class hierarchy and a mechanism to
support the combination of algebraic types as a new type. Existing libraries,
if encoding the algebraic hierarchy at all, use runtime value checks to de-
termine if two elements belong to the same ring for an incorrect false sense
of type safety in an otherwise statically-typed language. On the contrary,
our template metaprogramming mechanism provides true compile-time type
safety and compile-time code generation. The details of this mechanism are
transparent to end-users, providing a very natural interface for an end-user
mathematician.
Keywords: algebraic hierarchy · C++ templates · type safety

1 Introduction

In the world of computer algebra software there are two main categories. The first
is computer algebra systems, self-contained environments providing an interactive
user-interface and usually their own programming language. Custom interpreters
and languages yield powerful functionality and expressibility, however, obstacles re-
main. For a basic user, they must learn yet another programming language. For
an advanced user, interoperability and obtaining fine control of hardware resources
is challenging. Axiom [12] is a classic example of such a system. Moreover, these
problems are exacerbated by systems being proprietary and closed-source, such as
Maple [5], Magma [6], and Mathematica [18]. The second category is computer
algebra libraries, which add support for symbolic computation to an existing pro-
gramming environment. Since such libraries extend existing environments, and are
often free (as in free software), they can have a lower barrier to entry and better
accessibility. Some examples are NTL [14], FLINT [11], and CoCoALib [1].

The Basic Polynomial Algebra Subprograms (BPAS) library [2] is a free and
open-source computer algebra library for polynomial algebra, and is the subject of
this paper. The BPAS library looks to improve the efficiency of end-users through
both usability and performance, providing high-performance code along with an
interface which incorporates some of the expressibility of a custom computer algebra
system. The library’s core is implemented in C for performance and wrapped in a

1



C++ interface for usability. Like any computer algebra software, functionality is
highly important, yet usability makes the software practical.

The implementation of BPAS is focused on performance for modern computer
architectures by optimizing for data locality and through the effective use of par-
allelization. These techniques have been applied to our implementations of multi-
dimensional FFTs, real root isolation, dense modular polynomial arithmetic, and
dense integer polynomial multiplications; see [7] and references therein. Recent
works have extended BPAS to include arithmetic over large prime fields [8] and
sparse multivariate polynomial arithmetic [3]. Experimentation presented in those
works indicates that the performance of BPAS surpasses other existing works. All
of this functionality culminates into a high-performance and parallel polynomial
system solver (currently under development) based on the theory of regular chains
[4]. However, in the present discussion, we look to describe our efforts to make
these existing high-performance implementations accessible and practical through
user-interface design and improved usability.

Usability includes many things: ease of use in interfaces, syntax, and semantics;
mathematical correctness; accessibility and extensibility for end-users; and main-
tainability for developers. The BPAS library follows two driving principles in its
design. The first is to encapsulate as much complexity as possible on the devel-
oper’s side, where the developer’s intimacy with the code allows her to bear such a
burden, in order to leave the end-user’s code as clean as possible. The second can
be described by a common phrase in user experience design: “make it hard to do
the wrong thing.”

The object-oriented nature of C++, along with its automatic memory man-
agement, provides a very natural environment for a user-interface. While C++
is notoriously difficulty to learn, it remains ubiquitous in industry and scientific
computing, making it reasonably accessible, and particularly so, if complexity can
be well-encapsualted. Moreover, C++ being a compiled, statically- and strongly-
typed language, further aids the end-user. The compilation process itself provides
the user with checks on their code before it even runs. Meanwhile, statically-typed
languages have been shown to be beneficial to usability, and decreases development
time, compared to dynamic languages [10].

In the present work, we discuss our early efforts to use C++ metaprogramming
to aid in the usability of our interface, for which we hope that BPAS will be easily
adopted by other practitioners. Our discussion focuses on two aspects relating to
type safety and expressibility. First, encoding the algebraic hierarchy as a class hi-
erarchy is discussed in Section 2. Doing so while maintaining type safety is difficult;
syntactically valid operations may yield mathematically invalid operations between
incompatible rings. Secondly, we examine a mechanism to automatically adjust the
definition of a class created from the composition of other classes. In particular, we
look at polynomials adapting to different ground rings in Section 3. Our techniques
are discussed and contrasted with existing works in Section 4. We conclude and
present future work in Section 5.

We note that our techniques are not entirely new; the underlying template
metaprogramming constructs have been adopted into the C++ standard since as
early as C++11. Nevertheless, it remains useful to explore how these advanced
concepts can be employed in the context of computer algebra. For details on C++,
templates, and their capabilities, see [17].

2



2 Algebraic Hierarchy as a Class Hierarchy

In object-oriented programming (OOP) classes form a fundamental part of software
design. A class defines a type and how all instances of that type should behave.
Through a class hierarchy, or a tree of inheritance, classes have increasing special-
ization while maintaining all of the functionality of their superclasses. The benefits
of a class hierarchy are numerous, including providing a common interface to which
all objects should adhere, minimizing code duplication, facilitating incremental de-
sign, and of course, polymorphism. All of this provides better maintainability of
the software and a more natural use of the classes themselves since they directly
model their real-world counterparts.

For algebraic structures, the chain of class inclusions naturally admits an encod-
ing as a class hierarchy. For example, the class inclusions of some rings1,

field ⊂ Euclidean domain ⊂ GCD domain ⊂ integral domain ⊂ ring,

would allow rings as the topmost superclass with an incremental design down to
fields. Let us call such an encoding of algebraic types as a class hierarchy the
algebraic class hierarchy. Particularly, we look to implement this hierarchy as a
collection of abstract classes for the benefits of code re-use and enforcing a uniform
interface across all concrete types (e.g. integers, rational numbers).

Unfortunately, an encoding of algebraic structures as classes in this way yields
incorrect type safety. Through polymorphism, two objects sharing a superclass
interact and behave in a uniform way, without regard to if they are mathematically
compatible. Consider the C++ function declaration which could appear in the
topmost Ring class: Ring add(Ring x, Ring y). By polymorphism, any two Ring
objects could be passed to this function to produce valid code, but, if those objects
are from mathematically incompatible rings, this will certainly lead to errors. A
more robust system is needed to facilitate strict type safety.

Some libraries (see Section 4) solve this by checking runtime values to ensure
compatibility, throwing an error otherwise. Instead, our main idea is to define the
interface of a ring (or a particular subclass, e.g. integral domain) in such a way
where a function declaration itself restricts its parameters to be from compatible
rings.

In our algebraic class hierarchy, function declarations themselves restrict their
parameters to be from compatible rings through the use of template parameters.
Particularly, our algebraic class hierarchy is a hierarchy of class templates with
the template parameter Derived. This template parameter identifies the concrete
ring(s) with which the one being defined is compatible. In this design, all abstract
classes in the hierarchy have the template parameter Derived while the concrete
classes instantiate this template parameter of their superclass with that concrete
class itself being defined. This yields the C++ idiom, the Curiously Recurring
Template Pattern (CRTP) (see [17, Ch. 16]).

While CRTP has several functions, it is used here to facilitate static polymor-
phism. That is to say, it forces function resolution to occur at compile-time, in-
stead of dynamically at runtime via virtual tables, providing compile-time errors
for incompatibility. For example, the topmost Ring class would become a class tem-

1Throughout this paper we assume commutative rings with unity.

3



plate Ring<Derived> and the add function would become Derived add(Derived

x, Derived y).
This process works from a key observation when considering simultaneously

templates and class inheritance: different template parameter specializations pro-
duce distinct classes and thus distinct inheritance hierarchies. Recall that template
instantiation in fact causes code generation at compile-time. Thus, each concrete
ring defined via CRTP exists in its own class hierarchy, and dynamic dispatch via
polymorphism cannot cause runtime inconsistencies. This concept is illustrated in
Listing 1 where the abstract classes for ring and Euclidean domain are shown, as
well as the concrete class for the ring of integers. The Integer class uses template
instantiation where it defines its superclass, specializing the Derived parameter of
BPASEuclideanDomain to be Integer, following CRTP.

1 template <class Derived >
2 class BPASRing;
3

4 //... more abstract algebraic classes , e.g. BPASGCDDomain , BPASField
5

6 template <class Derived >
7 class BPASEuclideanDomain : BPASGCDDomain <Derived >;
8

9 class Integer : BPASEuclideanDomain <Integer >;

Listing 1: A subset of the algebraic class hierarchy, using CRTP to declare the integers.

While this design provides the desired compile-time type safety, it may be viewed
as too strict, since each concrete ring exists in an independent class hierarchy. For
example, arithmetic between integers and rational numbers would be restricted.
More generally, natural ring embeddings are neglected. However, we can make
use of implicit conversion in C++. Where a constructor exists for type A taking
an object of type B as input, an object of type B can be implicitly converted to
an object of type A, and used anywhere type A is expected. A RationalNumber

constructor taking an Integer parameter thus allows for automatic and implicit
conversion, allowing integers to be used as rational numbers.

This design via implicit conversion can be seen as giving permission for compat-
ibility between rings by defining such a constructor. Errors are then discovered at
compile-time where implicit conversion fails. This is in opposition to other methods
which act in a restrictive manner, allowing everything at compile-time and then
throwing errors at runtime if incompatible.

We now look to extend the abstract algebraic class hierarchy to include polyno-
mials. For genericity and a common structured interface we wish to parameterize
polynomials by their ground ring. This can be accomplished with a secondary tem-
plate parameter in addition to the Derived parameter already included by virtue
of polynomials existing in the algebraic class hierarchy (see Listing 2).

However, this is not fully sufficient, and two issues arise. First, while polynomials
do form a ring, they often form more specialized algebraic structures, e.g. a GCD
domain. We leave that discussion to Section 3. Secondly, there is no restriction on
the types which can be used as template parameter specializations of the ground
ring. Any type used as a specialization of this ground ring template parameter
should truly be a ring and not any other nonsense type. Recall, it should be hard
to do the wrong thing.

4



Leveraging another template trick along with multiple inheritance, this can be
solved with the so-called Derived from class2 which determines at compile-time
if one class is the subclass of another. Derived from is a template class with two
parameters: one a potential subclass, and the other a superclass. This class defines a
function converting the apparent subclass type to the superclass. If the conversion is
valid via implicit up-casting, then the function is well-formed, otherwise, a compiler
error occurs.

To make use of Derived from, a class template inherits from Derived from,
passing its own template parameter to Derived from as the potential subclass,
along with a statically defined superclass type. This enforces that the template
parameter be a subclass of that superclass. In our implementation, shown in List-
ing 2, polynomial classes enforce that their ground ring should be a BPASRing, our
abstract class for rings (recall the declaration of BPASRing from Listing 1).

1 // If T is not a subclass of Base , a compiler error occurs
2 template <class T, class Base> class Derived_from {
3 static void constraints(T* p) { Base* pb = p; }
4 Derived_from () { void(*p)(T*) = constraints; }
5 };
6

7 template <class Ring , class Derived >
8 class BPASPolynomial : BPASRing <Derived >, Derived_from <Ring , BPASRing <Ring>>;

Listing 2: An implementation of a polynomial interface using CRTP and Derived from.

All of these functionalities together create an algebraic hierarchy as a class
hierarchy while maintaining strict type safety. Yet, our scheme remains flexi-
ble enough to support implicit conversions, such as natural ring embeddings, and
generic enough to allow, for example, polynomials over user-defined classes, as long
as those classes inherit from BPASRing. What remains now is to address the issue
of polynomial rings sometimes forming different algebraic types depending on their
particular ground ring.

3 “Dynamic” Type Creation, Conditional Export

In object-oriented design, the combination of types to create another type is known
as composition. In this section, let us consider univariate polynomial rings; one can
always work recursively for multivariate polynomials. Viewing a polynomial ring as
a ring extension of its ground ring, polynomials can be seen as the composition of
some finite number of elements of that ground ring. Moreover, we know that the
properties of a polynomial ring depend on the properties of the ground ring. For
example, the ring of univariate polynomials over a field is a Euclidean domain while
the ring of polynomials over a ring is itself only a ring. Recall from the previous
section that our implementation of polynomials are templated by their ground ring.
Our goal then is to capture the idea that the position of a polynomial ring in the
algebraic class hierarchy changes depending on the particular specialization of this
template parameter.

More generally, we would like that the type resulting from the composition of
another type depends on the type being composed. Hence, a sort-of “dynamic”

2Derived from is a long-known trick, but is now adopted into the C++20 standard.

5



type creation. This is not truly dynamic, since it is a compile-time operation, but it
nonetheless feels dynamic since it is an automatic process by the compiler via tem-
plate instantiation. In fact, having this occur at compile-time is actually a benefit
where errors can be determined preemptively. One can also view this mechanism
as a way of controlling the methods which the newly created type exports. That
is, conditionally exposing methods (or other attributes) in its interface depend-
ing on the particular template parameter specialization. This technique relies on
compile-time introspection and SFINAE.

3.1 SFINAE and Compile-Time Introspection

Substitution Failure Is Not An Error (SFINAE), coined by Vandevoorde in [17],
refers to a fundamental part of C++ templating. The invalid substitution of a
type as a template parameter is itself not an error. Such a principle is required
for templates to be practical. Where two or more template specializations exist,
it is not required that the substitution of the template parameter fit all of the
specializations, but only one. This principle, combined with compile-time function
overload resolution, provides template metaprogramming its power. In particular,
compile-time introspection is possible: using templates, truth values about a type
can be determined and then made use of within the program.

Consider the typical example, adapted from [17, Section 8.3], shown in Listing 3.
type has X determines if a type has a member X by checking the size of the return
type of a function. By function overload resolution, if T has a member X the test<T>
function chosen will be the first, whose return type has size 1. Otherwise the second
function is chosen with return type of size (at least) 2.

1 template <typename T> char test(typename T::X const *);
2 template <typename T> int test(...);
3 #define type_has_X(T) (sizeof(test<T>(NULL)) == 1);

Listing 3: A simple compile-time introspection to determine if type T has member X.

This idea can be generalized to many introspective metaprogramming tech-
niques. For example, is base of, a standard feature in C++11, is much like
Derived from. However, instead of creating a compiler error, is base of deter-
mines a Boolean value representing if one type is derived from another.

Using introspection, one may think that enable if, another standard C++11
template construct, is sufficient. The enable if struct template conditionally com-
piles and exposes a function template based on the value of a Boolean known at
compile-time. This Boolean value can of course be determined by introspection.
Unfortunately, function templates cannot be virtual, thus this solution cannot be
used within a class hierarchy. Conditionally exposing methods in our algebraic class
hierarchy requires a different solution.

3.2 Conditional Inheritance for Polynomials

Defining new types dependent on the value of another type, as well as condition-
ally exposing member functions, can both be fulfilled by conditional inheritance.
Specifically, we implement a compile-time case discussion for inheritance based on
introspective values. In the context of polynomials in our algebraic class hierarchy,

6



that case discussion works as a cascade of type checks on the ground ring, say R,
when forming the polynomial ring R[x]. For example: if R is a field, then R[x] is
a Euclidean domain; else if R is a GCD domain, so is R[x]; else if R is an integral
domain, so is R[x]; else R[x] is a ring. This case discussion can be extended to
include as much granularity as needed.

To perform this case discussion, we use the C++11 metaprogramming feature
conditional, which uses a Boolean value known at compile-time to choose between
two types. This is much like the ternary conditional operator which uses a Boolean
to choose between two statements. Using is base of to determine the Boolean,
conditional chooses one of two types to use as a class’s superclass.

As a simple example, consider Listing 4. The definition of BPASPolynomial

tests if the Ring template parameter is a subclass of BPASField. If so, conditional
chooses BPASEuclideanDomain as the the superclass of BPASPolynomial, other-
wise BPASRing is chosen. Additionally, a concrete class SparseUnivarPoly is
shown, still parameterized by a coefficient ring. In this concrete class, the inter-
face of the class will adapt “dynamically” to a particular template specialization
via the conditional in its superclass. Notice also that the template parameter of
SparseUnivarPoly is enforced to be a subclass of BPASRing on specialization via
the Derived from of its superclass.

1 template <class Ring , class Derived >
2 class BPASPolynomial : conditional < is_base_of <Ring , BPASField <Ring>>::value ,
3 BPASEuclideanDomain <Derived >,
4 BPASRing <Derived > >::type ,
5 Derived_from < Ring , BPASRing <Ring> >;
6

7 template <class CoefRing >
8 class SparseUnivarPoly : BPASPolynomial <CoefRing ,SparseUnivarPoly <CoefRing >>;

Listing 4: A simple use of conditional to choose between Euclidean domain or ring as the algebraic
type of a polynomial based on its template parameter.

The presented code for BPASPolynomial in Listing 4 is rather simple, showing
only a single type check. To implement a chain of type checks, the “else” branch of a
conditional should simply be another conditional. To improve the readability of
this case discussion, we avoid directly implementing nested if-else chains, and thus
avoid using one conditional inside another. Instead, we create two symmetric
class hierarchies, one representing the true algebraic class inclusions while the other
is a “tester” hierarchy.

This tester hierarchy uses one conditional to determine if a property holds and,
if so, chooses the corresponding class from the algebraic hierarchy as superclass.
Otherwise, the next tester in the hierarchy is chosen as superclass to trigger the
evaluation of the next conditional. Finally, all concrete polynomial classes inherit
from BPASPolynomial to automatically determine their correct interface based on
their ground ring. This structure is shown in Figure 1, with the algebraic hierarchy
on the left, and the tester hierarchy on the right.

This technique of conditional inheritance is a powerful tool in any class template
hierarchy. By understanding the properties of a type via introspection, it can au-
tomatically be incorporated into an existing class hierarchy either as itself or when
used in composition to create a new type. For example, based on the specialization
of a template parameter, the definition of a class template can be changed automat-

7



Ring is a GCD domain

Ring is an integral domain

Ring is not an integral domain

BPASBasePolynomial

Ring,Derived

BPASIntegralDomainPoly

Ring,Derived

BPASGCDDomainPoly

Ring,Derived

BPASIntegralPolyTester

Ring,Derived

BPASGCDPolyTester

Ring,Derived

BPASPolynomial

Ring,Derived

Ring is not a GCD domain

BPASRing

BPASIntegralDomain

BPASGCDDomain

Figure 1: UML diagram for a subset of the polynomial abstract class hierarchy. Recall in UML
that template parameters are shown in dashed boxes. Template parameters for non-polynomial
classes are omitted for clarity. Note also that the multiple inheritance diamond problem is easily
solved using virtual inheritance.

ically and dynamically. Not only does this enforce a proper class interface, but it
allows the possibility of choosing between several different abstract implementations
in order to best support the new type (i.e. the result of a composition).

4 Discussion and Related Work

For decades, computer algebra systems have worked towards type safety. Axiom
[12] is a pioneering work on that front, but has grown out of popularity. Functional
languages, like Scala and Haskell, have seen some progress in developing computer
algebra systems thanks to type classes (see, e.g., [13] and references therein). These
languages and their type classes provide a very suitable environment to define al-
gebraic structures. However, while powerful, functional languages can be seen as
an obscure and inaccessible programming paradigm compared to the mainstream
imperative paradigm.

Considering other C/C++ computer algebra libraries, there are many exam-
ples with interesting mechanisms for handling algebraic structures. The Singular
library [9] perhaps has the most simple mechanism: a single class represents all
rings, using a number of enum and Boolean variables to determine properties of
instances at runtime. In CoCoALib [1] an abstract base class RingBase declares
many functions returning Boolean values. Concrete subclasses define these func-
tions to determine properties at runtime. While rings are subclasses of RingBase,
elements of a ring are an entirely different class. Elements have pointers to the
ring they belong, which are then compared at runtime to ensure compatibility in
arithmetic between two elements. LinBox [15] also has separate classes for rings
and their elements. There, ring properties are encoded as class templates where
concrete rings use explicit template specialization to define properties.

Much like the previous cases, the Mathemagix system requires instances (i.e.
elements) of a ring to have a specific reference to a separate entity encoding the ring

8



itself. Notably, Mathemagix also includes a scheme to import and export C++
code to and from the Mathemagix language [16]. This uses templates to allow, for
example, a ring specified in the Mathemagix language to be used as the coefficient
ring for polynomials defined in C++.

In all of these cases there is some limiting factor. Most often, mathematical
type safety is only a runtime property maintained by checking values. In some
cases this is implemented by separating rings themselves from elements of a ring, a
process counterintuitive to object-oriented design where one class should define the
behaviour of all instances of that type.

On the contrary, our scheme does not rely on runtime checks. Instead, a func-
tion declaration itself restricts its arguments to be mathematically compatible at
compile-time via the use of template parameters and the Curiously Recurring Tem-
plate Pattern. By using an abstract class hierarchy many such function declarations
are combined through consecutive inheritances to build up an interface incremen-
tally. This closely follows the chain of class inclusions for algebraic types, where
each type adds properties to the previous. The symmetry between the algebraic
hierarchy and our class hierarchy hopes to make our interfaces natural and ap-
proachable to an end-user. This symmetry comes at the price of creating a deep
class hierarchy, and thus strong coupling within the class hierarchy. Yet, this price is
worth the symmetry and comprehensibility of the class hierarchy with the algebraic
hierarchy.

In contrast with our class hierarchy solution to type safety, a different compile-
time solution could be crafted through further use of type traits (see, e.g., [17,
Ch. 15, 17]). Type traits are template metaprogramming constructs for type
introspection and modification, some of which have already been seen, such as
is base of, and conditional. Type traits are arguably more flexible, however,
template metaprogramming is already rather difficult, and is essentially limited to
C++. Class hierarchies, on the other hand, are present in every object-oriented
language and should therefore be more accessible to end-users. The use of class
hierarchies, in addition to encapsulating much of the template metaprogramming
in our design, should provide better extensibility to end-users in general.

5 Conclusion and Future Work

In this work we have explored part of the implementation and design of the C++
interface of the BPAS library. Through the use of template metaprogramming we
have devised a so-called algebraic class hierarchy which directly models the algebraic
hierarchy while providing compile-time type safety. This hierarchy is type-safe both
in the programming language sense and the mathematical sense.

Using inheritance throughout the algebraic abstract class hierarchy, the inter-
face of algebraic types is constructed incrementally. Therefore, a concrete type’s
properties and interface is determined by its particular abstract superclass from this
hierarchy. Through additional templating techniques, we can automatically infer,
at compile-time, the correct superclass (and thus interface) of new types created
by template parameter specialization (e.g. polynomials). The result is a consistent
and enforced interface for all classes modelling algebraic types.

We are currently working to extend our algebraic class hierarchy to include mul-

9



tivariate power series, polynomials with power series coefficients, and polynomials
in prime characteristic. This more capable hierarchy will be used within our library
to implement a sophisticated solver for systems of polynomial equations, a proto-
type of which is already available in recent releases of BPAS. Finally, we hope to
create a Python interface to the BPAS library (i.e. an extension module) to further
improve the accessibility and ease of use of our library.

Acknowledgements

The authors would like to thank IBM Canada Ltd (CAS project 880) and NSERC
of Canada (CRD grant CRDPJ500717-16, award CGSD3-535362-2019).

References

[1] J. Abbott and A. M. Bigatti. CoCoALib: a C++ library for doing Computa-
tions in Commutative Algebra. Available at http://cocoa.dima.unige.it/cocoalib.

[2] M. Asadi, A. Brandt, C. Chen, S. Covanov, F. Mansouri, D. Mohajerani,
R. H. C. Moir, M. Moreno Maza, L. Wang, N. Xie, and Y. Xie. Basic Poly-
nomial Algebra Subprograms (BPAS). http://bpaslib.org. 2020.

[3] M. Asadi, A. Brandt, R. H. C. Moir, and M. Moreno Maza. “Algorithms
and Data Structures for Sparse Polynomial Arithmetic”. In: Mathematics 7.5
(2019), p. 441.

[4] M. Asadi, A. Brandt, R. H. C. Moir, M. Moreno Maza, and Y. Xie. “On
the Parallelization of Triangular Decomposition of Polynomial Systems”. In:
CoRR abs/1906.00039 (2019).

[5] L. Bernardin, P. Chin, P. DeMarco, K. O. Geddes, D. E. G. Hare, K. Heal,
G. Labahn, J. P. May, J. McCarron, M. B. Monagan, D. Ohashi, and S. M.
Vorkoetter. Maple Programming Guide. www.maplesoft.com/documentation_
center/maple2018/ProgrammingGuide.pdf. 2018.

[6] W. Bosma, J. Cannon, and C. Playoust. “The Magma algebra system. I. The
user language”. In: J. Symbolic Comput. 24.3-4 (1997). Computational algebra
and number theory (London, 1993), pp. 235–265.

[7] C. Chen, S. Covanov, F. Mansouri, M. Moreno Maza, N. Xie, and Y. Xie.
“The Basic Polynomial Algebra Subprograms”. In: Mathematical Software -
ICMS 2014 - 4th International Congress, Seoul, South Korea, August 5-9,
2014. Proceedings. 2014, pp. 669–676.

[8] S. Covanov, D. Mohajerani, M. Moreno Maza, and L. Wang. “Big Prime
Field FFT on Multi-core Processors”. In: 2019 International Symposium on
Symbolic and Algebraic Computation, Proceedings. 2019, pp. 106–113.

[9] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 4-1-1
— A computer algebra system for polynomial computations. http://www.
singular.uni-kl.de. 2018.

[10] S. Endrikat, S. Hanenberg, R. Robbes, and A. Stefik. “How do api documenta-
tion and static typing affect api usability?” In: 36th International Conference
on Software Engineering, Proceedings. ACM. 2014, pp. 632–642.

10

http://bpaslib.org
www.maplesoft.com/documentation_center/maple2018/ProgrammingGuide.pdf
www.maplesoft.com/documentation_center/maple2018/ProgrammingGuide.pdf
http://www.singular.uni-kl.de
http://www.singular.uni-kl.de


[11] W. Hart, F. Johansson, and S. Pancratz. FLINT: Fast Library for Number
Theory. Version 2.5.2, http://flintlib.org. 2015.

[12] R. D. Jenks and R. S. Sutor. Axiom, the scientific computation system. 1992.

[13] R. Jolly. “Categories as Type Classes in the Scala Algebra System”. In: Com-
puter Algebra in Scientific Computing - 15th International Workshop, Pro-
ceedings. 2013, pp. 209–218.

[14] V. Shoup et al. NTL: A library for doing number theory. www.shoup.net/
ntl/.

[15] The LinBox group. LinBox. v1.6.3. 2019. url: http://github.com/linbox-
team/linbox.

[16] J. van der Hoeven and G. Lecerf. “Interfacing mathemagix with C++”. In:
Proceedings of the 2013 International Symposium on Symbolic and Algebraic
Computation. 2013, pp. 363–370.

[17] D. Vandevoorde and N. M. Josuttis. C++ Templates. Addison-Wesley Long-
man Publishing Co., Inc., 2002.

[18] Wolfram Research, Inc. Mathematica, Version 11.3. Champaign, IL, 2018.

11

http://flintlib.org
 www.shoup.net/ntl/
 www.shoup.net/ntl/
http://github.com/linbox-team/linbox
http://github.com/linbox-team/linbox

	Introduction
	Algebraic Hierarchy as a Class Hierarchy
	``Dynamic'' Type Creation, Conditional Export
	SFINAE and Compile-Time Introspection
	Conditional Inheritance for Polynomials

	Discussion and Related Work
	Conclusion and Future Work

