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Abstract. Subresultants are one of the most fundamental tools in com-
puter algebra. They are at the core of numerous algorithms including,
but not limited to, polynomial GCD computations, polynomial system
solving, and symbolic integration. When the subresultant chain of two
polynomials is involved in a client procedure, not all polynomials of the
chain, or not all coefficients of a given subresultant, may be needed. Based
on that observation, this paper discusses different practical schemes, and
their implementation, for efficiently computing subresultants. Extensive
experimentation supports our findings.
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1 Introduction

The goal of this paper is to investigate how several optimization techniques for
subresultant chain computations benefit polynomial system solving in practice.
These optimizations rely on ideas which have appeared in previous works, but
without the support of successful experimental studies. Therefore, this paper
aims at filling this gap.

The first of these optimizations takes advantage of the Half-GCD algorithm
for computing GCDs of univariate polynomials over a field k. For input polyno-
mials of degree (at most) n, this algorithm runs within O(M(n) logn) operations
in k, where M(n) is a polynomial multiplication time, as defined in [25, Chapter
8]. The Half-GCD algorithm originated in the ideas of [15], [13] and [22], while
a robust implementation was a challenge for many years. One of the earliest
correct designs was introduced in [24].

The idea of speeding up subresultant chain computations by means of the
Half-GCD algorithm takes various forms in the literature. In [21], Reischert
proposes a fraction-free adaptation of the Half-GCD algorithm, which can be
executed over an effective integral domain B, within O(M(n) logn) operations
in B. We are not aware of any implementation of Reischert’s algorithm.

In [17], Lickteig and Roy introduced a fast divide and conquer variant of the
subresultant algorithm which avoids coefficient growth in defective cases. In [14],
Lecerf analyses the complexity of their algorithm, when run over an effective
ring endowed with the partially defined division routine, yielding a running time
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estimate similar to that of Reischert. Lecerf realized an implementation of that
algorithm, but observed in [14] that computations of subresultant chains based
Ducos algorithm [9] or evaluation-interpolation strategies were faster.

In [25, Chapter 11], von zur Gathen and Gerhard show how the nominal co-
efficients (see Section 2 for this term) of the subresultant chain of two univariate
polynomials a, b over a field can be computed within O(M(n) logn) operations
in k, by means of an adaptation of the Half-GCD algorithm. In this paper, we
extend their approach to compute any pair of consecutive non-zero subresultants
of a, b within the same time bound. The details are presented in Section 3.

The second of these optimizations for subresultant chain computations relies
on the observation that not all non-zero subresultants of a given subresultant
chain may be needed. To illustrate this fact, consider two commutative rings
A and B, two non-constant univariate polynomials a, b in A[y] and a ring ho-
momorphism Ψ from A to B so that Ψ(lc(a)) ≠ 0 and Ψ(lc(b)) ≠ 0. Then, the
specialization property of subresultants (see the precise statement in Section 2)
tells us that the subresultant chain of Ψ(a), Ψ(b) is the image of the subresultant
chain of a, b via Ψ .

This property has at least two important practical applications. When B is
polynomial ring over a field, say B is Z/pZ[x] and A is Z/pZ, then one can com-
pute a GCD of Ψ(a), Ψ(b) via evaluation and interpolation techniques. Similarly,
when B is a field extension, say B is Q[x]/⟨m(x)⟩, where m(x) is a square-free
polynomial, and A is Q[x], then one can compute a GCD of Ψ(a), Ψ(b) using
the celebrated D5 Principle [7]. More generally, if B is Q[x1, . . . , xn]/⟨T ⟩, where
T = (t1(x1), . . . , tn(x1, . . . , xn)) is a zero-dimensional regular chain (generating a
radical ideal), and A is Q[x1, . . . , xn], then one can compute a so-called regular
GCD of a and b modulo ⟨T ⟩, see [4]. The principle of that calculation generalizes
the D5 Principle as follows:

1. if the resultant of a, b is invertible modulo ⟨T ⟩ then 1 is a regular GCD of a
and b modulo ⟨T ⟩;

2. if the nominal leading coefficients so, s1, . . . , sk are all zero modulo ⟨T ⟩, for
some k, and the nominal leading coefficient sk+1 is invertible modulo ⟨T ⟩,
the subresultant Sk of index k of a, b is a regular GCD of a and b modulo
⟨T ⟩; and

3. one can always reduce to one of the above two cases by splitting T , when a
zero-divisor of B is encountered.

In practice, in the above procedure, k is often zero, which can be seen as a
consequence of the celebrated Shape Lemma [3]. This suggests to compute the
subresultant chain of a, b in A[y] speculatively. To be precise, and taking advan-
tage of the Half-GCD algorithm, it is desirable to compute the subresultants of
index 0 and 1, delaying the computation of subresultants of higher index until
proven necessary.

We discuss that idea of computing subresultants speculatively in Section 3.
Making that approach successful, in comparison to non-speculative approaches,
requires to overcome several obstacles:
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1. computing efficiently the subresultants S0 and S1, via the Half-GCD; and
2. developing an effective “recovery” strategy in case of “misprediction”, that

is, when subresultants of index higher than 1 turn out to be needed.

To address the first obstacle, our implementation, combines various implemen-
tation schemes of the Half-GCD, inspired by the work done in NTL [23]. To
address the second obstacle, when we compute the subresultants of index 0 and
1, via the Half-GCD, we record or cache the sequence of quotients (associated
with the Euclidean remainders) so as to easily obtain subresultants of index
higher than 1, if needed.

The extensive experimentation results in Section 5 indicate that the perfor-
mance of our univariate polynomials over finite fields (based on FFT) are closely
comparable with their counterparts in NTL. In addition, we have aggressively
tuned our subresultant schemes based on evaluation-interpolation techniques.
Our modular subresultant chain algorithms are up to 10× and 400× faster than
non-modular counterparts (mainly Ducos’ subresultant chain algorithm) in Z[y]
and Z[x, y], respectively. Further, utilizing the Half-GCD algorithm to compute
subresultants yields an additional speed-up factor of 7× and 2× for polynomials
in Z[y] and Z[x, y], respectively.

Further still, we optimize Ducos’ subresultant chain algorithm in terms of
memory access patterns, see Section 4. We have implemented both the original
Ducos algorithm [9] and our optimized version over both arbitrary-precision
integers and rational numbers. For univariate polynomials of degree as large as
2000, these implementations, respectively, use 11× and 3× less memory than the
original Ducos algorithm implemented in Maple.

All of our code, providing also univariate and multivariate polynomial arith-
metic, is open source and part of the Basic Polynomial Algebra Subprograms
(BPAS) library available at www.bpaslib.org. Our many subresultant schemes
have been integrated, tested and utilized in the multithreaded BPAS solver [2].

2 Review of subresultant theory

In this review of subresultant theory, we follow the presentations of [8] and [12].
Let B be a commutative ring with identity and let m ≤ n be positive integers.
Let M be a m×n matrix with coefficients in B. Let Mi be the square submatrix
of M consisting of the first m − 1 columns of M and the i-th column of M , for
m ≤ i ≤ n; let det(Mi) be the determinant of Mi. The determinantal polynomial
of M denoted by dpol(M) is a polynomial in B[y], given by

dpol(M) = det(Mm)yn−m + det(Mm+1)yn−m−1 +⋯ + det(Mn).

Note that, if dpol(M) is not zero, then its degree is at most n−m. Let f1, . . . , fm
be polynomials of B[y] of degree less than n. We denote by mat(f1, . . . , fm) the
m × n matrix whose i-th row contains the coefficients of fi, sorted in order of
decreasing degree, and such that fi is treated as a polynomial of degree n−1. We
denote by dpol(f1, . . . , fm) the determinantal polynomial of mat(f1, . . . , fm).

www.bpaslib.org
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Let a, b ∈ B[y] be non-constant polynomials of respective degrees m = deg(a),
n = deg(b) with m ≥ n. The leading coefficient of a w.r.t. y is denoted by lc(a).
Let k be an integer with 0 ≤ k < n. Then, the k-th subresultant of a and b (also
known as the subresultant of index k of a and b), denoted by Sk(a, b), is

Sk(a, b) = dpol(yn−k−1a, yn−k−2a, . . . , a, ym−k−1b, . . . , b).

This is a polynomial which belongs to the ideal generated by a and b in B[y].
In particular, S0(a, b) is the resultant of a and b denoted by res(a, b). Observe
that if Sk(a, b) is not zero then its degree is at most k. If Sk(a, b) has de-
gree k, then Sk(a, b) is said to be non-defective or regular; if Sk(a, b) ≠ 0 and
deg(Sk(a, b)) < k, then Sk(a, b) is said to be defective. We call k-th nominal
leading coefficient, demoted by sk, the coefficient of Sk(a, b) in yk. Observe that
if Sk(a, b) is defective, then we have sk = 0. For convenience, we extend the
definition to the n-th subresultant as follows:

Sn(a, b) = {γ(b)b, if m > n or lc(b) ∈ B is regular
undefined, otherwise

where γ(b) = lc(b)m−n−1. In the above, regular means not a zero-divisor. Note

that when m equals n and lc(b) is a regular element in B, then Sn(a, b) = lc(b)−1b
is in fact a polynomial over the total fraction ring of B. We call specialization
property of subresultants the following property. Let A be another commutative
ring with identity and Ψ a ring homomorphism from B to A such that we have
Ψ(lc(a)) ≠ 0 and Ψ(lc(b)) ≠ 0. Then, for 0 ≤ k ≤ n, we have:

Sk(Ψ(a), Ψ(b)) = Ψ(Sk(a, b)).

From now on, we assume that the ring B is an integral domain. Writing
δ = deg(a) − deg(b), there exists a unique pair (q, r) of polynomials in B[y]
satisfying ha = qb + r, where h = lc(b)δ+1, and either r = 0 or deg(r) < deg(b);
the polynomials q and r, denoted respectively pquo(a, b) and prem(a, b), are the
pseudo-quotient and pseudo-reminder of a by b. The subresultant chain of a and
b, defined as

subres(a, b) = (Sn(a, b), Sn−1(a, b), Sn−2(a, b), . . . , S0(a, b)),

satisfies relations which induce a Euclidean-like algorithm for computing the
entire subresultant chain: subres(a, b). This algorithm runs within O(n2) oper-
ations in B, when m = n, see [8]. For convenience, we simply write Sk instead of
Sk(a, b) for each k. We write a ∼ b, for a, b ∈ B[y], whenever a, b are associate
elements in frac(B)[y], the field of fractions of B. Then for 1 ≤ k < n, we have:

(i) Sn−1 = prem(a,−b); if Sn−1 is non-zero, defining e ∶= deg(Sn−1), then we
have

Se−1 =
prem(b,−Sn−1)

lc(b)(m−n)(n−e)+1
,
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(ii) if Sk−1 ≠ 0, defining e ∶= deg(Sk−1) and assuming e < k − 1 (thus assuming
Sk−1 defective), then we have:

(a) deg(Sk) = k, thus Sk is non-defective,

(b) Sk−1 ∼ Se and lc(Sk−1)k−e−1Sk−1 = skk−e−1Se, thus Se is non-defective,
(c) Sk−2 = Sk−3 = ⋯ = Se+1 = 0,

(iii) if both Sk and Sk−1 are non-zero, with respective degrees k and e then we
have:

Se−1 =
prem(Sk,−Sk−1)

lc(Sk)k−e+1
.

Algorithm 1 Subresultant (a, b, y)
Input: a, b ∈ B[y] with m = deg(a) ≥ n = deg(b) and B is an integral domain
Output: the non-zero subresultants from (Sn, Sn−1, Sn−2, . . . , S0)
1: if m > n then
2: S ∶= (lc(b)m−n−1b)
3: else S ∶= ()
4: s ∶= lc(b)m−n

5: A ∶= b; B ∶= prem(a,−b)
6: while true do
7: d ∶= deg(A); e ∶= deg(B)
8: if B = 0 then return S
9: S ∶= (B) ∪ S; δ ∶= d − e

10: if δ > 1 then

11: C ∶= lc(B)δ−1
B

sδ−1

12: S ∶= (C) ∪ S
13: else C ∶= B
14: if e = 0 then return S

15: B ∶= prem(A,−B)
sδlc(A)

16: A ∶= C; s ∶= lc(A)
17: end while

Algorithm 1 from [9] is a known version of this procedure that computes all
non-zero subresultants a, b ∈ B[y]. Note that the core of this algorithm is the
while-loop in which the computation of the subresultants Se and Se−1, with the
notations of the above points (ii) and (iii), are carried out.

3 Computing subresultant chains via the Half-GCD,
speculatively

As discussed in the introduction, when the ring B is a field k, the computation
of the subresultant chain of the polynomials a, b ∈ B[y] can take advantage
of asymptotically fast algorithms for computing gcd(a, b). After recalling its
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specifications, we explain how we take advantage of the Half-GCD algorithm in
order to compute the subresultants in subres(a, b) speculatively.

Consider two non-zero univariate polynomials a, b ∈ k[y] with n0 ∶= deg(a),
n1 ∶= deg(b) with n0 ≥ n1. The extended Euclidean algorithm (EEA) computes
the successive remainders (r0 ∶= a, r1 ∶= b, r2, . . . , r` = gcd(a, b)) with degree se-
quence (n0, n1, n2 ∶= deg(r2) . . . , n` ∶= deg(r`)) and the corresponding quotients
(q1, q2, . . . , q`) defined by

(i) ri+1 = rem(ri, ri−1) = ri−1 − qiri, for 1 ≤ i ≤ `,
(ii) qi = quo(ri, ri−1) for 1 ≤ i ≤ `,

(iii) ni+1 < ni, for 1 ≤ i < `, and
(iv) r`+1 = 0 with deg(rl+1) = −∞.

This computation requires O(n2) operations in k. We denote by Qi, the
quotient matrices, defined, for 1 ≤ i ≤ `, by

Qi = [0 1
1 −qi

] .

so that, for 1 ≤ i < `, we have

[ ri
ri+1

] = Qi [
ri−1
ri

] = Qi . . .Q1 [
r0
r1

] . (1)

We define mi ∶= deg(qi), so that we have mi = ni−1 − ni for 1 ≤ i ≤ `. The
degree sequence (n0, . . . , nl) is said to be normal if ni+1 = ni−1 holds, for 1 ≤ i < `,
or, equivalently if deg(qi) = 1 holds, for 1 ≤ i ≤ `.

Using the remainder and degree sequences of non-zero polynomials a, b ∈ k[y],
Proposition 1, known as the fundamental theorem on subresultants, introduces
a procedure to compute the nominal leading coefficients of polynomials in the
subresultant chain.

Proposition 1 For k = 0, . . . , n1, the nominal leading coefficient of the k-th
subresultant of (a, b) is either 0 or sk if there exists i ≤ ` such that k = deg(ri),

sk = (−1)τi ∏
1≤j<i

lc(rj)nj−1−nj+1 lc(ri)ni−1−ni ,

where τi = ∑1≤j<i(nj−1 − ni)(nj − ni) [25].

The Half-GCD, also known as the fast extended Euclidean algorithm, is a
divide-and-conquer algorithm for computing a single row of the EEA, say the
last one. This can be interpreted as the computation of a 2 × 2 matrix Q over
k[y] so that we have:

[gcd(a, b)
0

] = Q [a
b
] .

The major difference between the classical EEA and the Half-GCD algorithm
is that, while the EEA computes all the remainders r0, r1, . . . , r` = gcd(r0, r1),
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the Half-GCD computes only two consecutive remainders, which are derived
from the Qi quotient matrices, which in turn are obtained from a sequence of
“truncated remainders”, instead of the original ri remainders.

Here, we take advantage of the Half-GCD algorithm presented in [25, Chapter
11]. For a non-negative k ≤ n0, this algorithm computes the quotients q1, . . . , qhk
where hk is defined as

hk = max{0 ≤ j ≤ ` ∣
j

∑
i=1

mi ≤ k}, (2)

the maximum j ∈ N so that ∑1≤i≤j deg(qi) ≤ k. This is done within (22M(k) +
O(k)) log k operations in k. From Equation 2, hk ≤ min(k, `), and

hk

∑
i=1

mi =
hk

∑
i=1

(ni−1 − ni) = n0 − nhk ≤ k <
hk+1

∑
i=1

mi = n0 − nhk+1. (3)

Thus, nhk+1 < n0−k ≤ nhk , and so hk can be uniquely determined; see Algorithm
11.6 in [25] for more details.

Due to the deep relation between subresultants and the remainders of the
EEA, the Half-GCD technique can support computing subresultants. This ap-
proach is studied in [25]. The Half-GCD algorithm is used to compute the
nominal leading coefficient of subresultants up to sρ for ρ = nhk by comput-
ing the quotients q1, . . . , qhk , calculating the lc(ri) = lc(ri−1)/lc(qi) from lc(r0)
for 1 ≤ i ≤ hk, and applying Proposition 1. The resulting procedure runs within
the same complexity as the Half-GCD algorithm.

However, for the purpose of computing two successive subresultants Snv , Snv+1

given 0 ≤ ρ < n1, for 0 ≤ v < ` so that nv+1 ≤ ρ < nv, we need to compute quotients
q1, . . . , qhρ where hρ is defined as

hρ = max{0 ≤ j < ` ∣ nj > ρ}, (4)

using Half-GCD. Let k = n0 − ρ, Equations 3 and 4 deduce nhρ+1 ≤ n0 − k < nhρ ,
and hρ ≤ hk. So, to compute the array of quotients q1, . . . , qhρ , we can utilize an
adaptation of the Half-GCD algorithm of [25]. Algorithm 2 is this adaptation
and runs within the same complexity as the algorithm of [25].

Algorithm 2 receives as input two polynomials r0 ∶= a, r1 ∶= b in k[y], with
n0 ≥ n1, 0 ≤ k ∈ N, ρ ≤ n0 where ρ, by default, is n0 − k, and the array A of
the leading coefficients of the remainders that have been computed so far. This
array should be initialized to size n0 + 1 with A[n0] = lc(r0) and A[i] = 0 for
0 ≤ i < n0. A is updated in-place as necessary. The algorithm returns the array
of quotients Q ∶= (q1, . . . , qhρ) and matrix M ∶= Qhρ⋯Q1.

Algorithm 2 and the fundamental theorem on subresultants yield Algorithm
3. This algorithm is a Half-GCD-based subresultant algorithm to calculate two
successive subresultants without computing others in the chain. Moreover, this
algorithm returns intermediate data that has been computed by the Half-GCD
algorithm—the array R of the remainders, the array Q of the quotients and the
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Algorithm 2 AdaptedHGCD(r0, r1, k, ρ,A)
Input: r0, r1 ∈ k[y] with n0 = deg(r0) ≥ n1 = deg(r1), 0 ≤ k ≤ n0, 0 ≤ ρ ≤ n0 is an upper

bound for the degree of the last computed remainder that, by default, is n0−k and
is fixed in recursive calls (See Algorithm 3), the array A of the leading coefficients
of the remainders (in the Euclidean sequence) which have been computed so far

Output: hρ ∈ N so that hρ = max{j ∣ nj > ρ}, the array Q ∶= (q1, . . . , qhρ) of the first hρ
quotients associated with the remainder in the Euclidean sequence and the matrix
M ∶= Qhρ⋯Q1; the array A of leading coefficients is updated in-place

1: if r1 = 0 or ρ ≥ n1 then return (0, (), [1 0
0 1

] )

2: if k = 0 and n0 = n1 then

3: return (1, (lc(r0)/lc(r1)), [
0 1
1 −lc(r0)/lc(r1)] )

4: m1 ∶= ⌈ k
2
⌉; δ1 ∶= max(deg(r0) − 2 (m1 − 1),0); λ ∶= max(deg(r0) − 2k,0)

5: (h′, (q1, . . . , qh′),R) ∶= AdaptedHGCD(quo(r0, yδ1),quo(r1, yδ1),m1 − 1, ρ,A)

6: [c
d
] ∶= R [quo(r0, yλ)

quo(r1, yλ)
] where R ∶= [R00 R01

R10 R11
]

7: m2 ∶= deg(c) + deg(R11) − k
8: if d = 0 or m2 > deg(d) then return (h′, (q1, . . . , qh′),R)

9: r ∶= rem(c, d); q ∶= quo(c, d); Q ∶= [0 1
1 −q]

10: nh′+1 ∶= nh′ − deg(q)
11: if nh′+1 ≤ ρ then return (h′, (q1, . . . , qh′ , q),R)

12: A[nh′+1] ∶= A[nh′]/lc(q)
13: δ2 ∶= max(2m2 − deg(d),0)
14: (h∗, (qh′+2, . . . , qh′+h∗+1), S) ∶=

AdaptedHGCD(quo(d, yδ2),quo(r, yδ2),deg(d) −m2, ρ,A)
15: return (hρ ∶= h′ + h∗ + 1,Q ∶= (q1, . . . , qhρ),M ∶= SQR)

array A of the leading coefficients of the remainders in the Euclidean sequence—
to later calculate higher subresultants in the chain without calling Half-GCD
again. This caching scheme is shown in Algorithm 4.

Let us explain this technique with an example. For non-zero polynomials
a, b ∈ k[y] with n0 = deg(a), n1 = deg(b), so that we have n0 ≥ n1. The subre-
sultant call Subresultant(a, b,0) returns S0(a, b), S1(a, b) without computing
(Sn1 , Sn1−1, Sn1−2, . . . , S2), arrays Q = (q1, . . . , q`), R = (r`, r`−1), and A. There-
fore, any attempt to compute subresultants with higher indices can be addressed
by utilizing the arrays Q,R,A instead of calling Half-GCD again. In the Tri-
angularize algorithm for solving systems of polynomial equations by triangular
decomposition, the RegularGCD subroutine relies on this technique for improved
performance; see [2] and [4] for more details and algorithms.
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Algorithm 3 Subresultant(a, b, ρ)
Input: a, b ∈ k[x] ∖ {0} with n0 = deg(a) ≥ n1 = deg(b), 0 ≤ ρ ≤ n0

Output: Subresultants Snv(a, b), Snv+1(a, b) for such 0 ≤ v < ` so that nv+1 ≤ ρ < nv,
the array R of the remainders, the array Q of the quotients and the array A of the
leading coefficients of the remainders (in the Euclidean sequence) that have been
computed so far

1: A ∶= (0, . . . ,0, lc(a)) where A[n0] = lc(a) and A[i] = 0 for 0 ≤ i < n0

2: if ρ ≥ n1 then
3: A[n1] = lc(b)
4: return ((a, lc(b)m−n−1b), (), (),A)

5: (v,Q,M) ∶= AdaptedHGCD(a, b, n0 − ρ, ρ,A)
6: deduce (n0 = deg(a), n1 = deg(b), . . . , nv = deg(rv)) from a, b and Q.

7: [ rv
rv+1

] ∶=M [a
b
]; R ∶= (rv, rv+1); nv+1 ∶= deg(rv+1)

8: τv ∶= 0; τv+1 ∶= 0; α ∶= 1
9: for j from 1 to v − 1 do

10: τv ∶= τv + (nj−1 − nv)(nj − nv)
11: τv+1 ∶= τv+1 + (nj−1 − nv+1)(nj − nv+1)
12: α ∶= α A[nj]nj−1−nj+1

13: τv+1 ∶= τv+1 + (nv−1 − nv+1)(nv − nv+1)
14: Snv ∶= (−1)τvα rv
15: Snv+1 ∶= (−1)τv+1α A[nv]nv−1−nv+1 rv+1
16: return ((Snv , Snv+1),Q,R,A)

Algorithm 4 Subresultant(a, b, ρ,Q,R,A)
Input: a, b ∈ k[x] ∖ {0} with n0 = deg(a) ≥ n1 = deg(b), 0 ≤ ρ ≤ n0, the list Q of all the

quotients in the Euclidean sequence, the list R of the remainders that have been
computed so far; we assume that R contains at least rµ, . . . r`−1, r` with 0 ≤ µ ≤ `−1,
and the listA of the leading coefficients of the remainders in the Euclidean sequence

Output: Subresultants Snv(a, b), Snv+1(a, b) for such 0 ≤ v < ` so that nv+1 ≤ ρ < nv;
the list R of the remainders is updated in-place

1: deduce (n0 = deg(a), n1 = deg(b), . . . , n` = deg(r`)) from a, b and Q
2: if n` ≤ ρ then v ∶= `
3: else find 0 ≤ v < ` such that nv+1 ≤ ρ < nv.

4: if v = 0 then
5: return (a, lc(b)m−n−1b)

6: for i from max(v, µ + 1) down to v do
7: ri ∶= ri+1qi+1 + ri+2; R ∶= R ∪ (ri)
8: compute Snv , Snv+1 using Proposition 1 from rv, rv+1
9: return (Snv , Snv+1)

For polynomials a, b ∈ Z[y] with integer coefficients, a modular algorithm can
be achieved by utilizing the Chinese remainder theorem (CRT). In this approach,



10

we use Algorithms 2 and 3 for a prime field k. We define Zp[y] as the ring of uni-
variate polynomials with coefficients in Z/pZ, for some prime p. Further, we use
an iterative and probabilistic approach to CRT from [19]. We iteratively calcu-
late subresultants modulo different primes p0, p1, . . ., continuing to add modular
images to the CRT direct product Zp0⊗⋯⊗Zpi for i ∈ N until the reconstruction
stabilizes. That is to say, the reconstruction does not change from Zp0⊗⋯⊗Zpi−1

to Zp0 ⊗⋯⊗Zpi .
We further exploit this technique to compute subresultants of bivariate poly-

nomials over prime fields and the integers. Let a, b ∈ B[y] be polynomials with
coefficients in B = Zp[x], thus B[y] = Zp[x, y], where the main variable is y
and p ∈ N is an odd prime. A desirable subresultant algorithm then uses an
evaluation-interpolation scheme and the aforementioned univariate routines to
compute subresultants of univariate images of a, b over Zp[y] and then interpo-
lates back to obtain subresultants over Zp[x, y]. This approach is well-studied in
[19] to compute the resultant of bivariate polynomials. We can use the same tech-
nique to compute the entire subresultant chain, or even particular subresultants
via Half-GCD through Algorithms 2 and 3.

We begin with choosing a set of evaluation points of size N and evaluate
each coefficient of a, b ∈ Zp[x, y] with respect to the main variable (y). Then,
we call the subresultant algorithm to compute subresultants images over Zp[y].
Finally, we can retrieve the bivariate subresultants by interpolating each coeffi-
cient of each subresultant from the images. The number of evaluation points is
determined from an upper-bound on the degree of subresultants and resultants
with respect to x. From [25], the following inequality holds,

N ≥ deg(b, y)deg(a, x) + deg(a, y)deg(b, x) + 1.

For bivariate polynomials with integer coefficients, we can use the CRT algo-
rithm in a similar manner to that which has already been reviewed for univariate
polynomials over Z. Figure 1 demonstrates this procedure for two polynomials
a, b ∈ Z[x, y]. In this commutative diagram, ā, b̄ represent the modular images of
the polynomials a, b modulo prime pi for 0 ≤ i ≤ e.

a, b ∈ Z[x, y] subres(a, b, y) ∈ Z[x, y]

ā, b̄ ∈ Zpi[x, y] subres(ā, b̄, y) ∈ Zpi[x, y]

ā(x, y)∣x=ti , b̄(x, y)∣x=ti ∈ Zpi[y] subres(ā(x, y)∣x=ti , b̄(x, y)∣x=ti , y) ∈ Zpi[y]

Algorithm 1

modulo p0,p1,...,pi

Evaluate at t0,...,tN

CRT

Algorithm 3

Interpolate at x

Fig. 1: Computing the subresultant chain of a, b ∈ Z[x, y] using modular arithmetic,
evaluation-interpolation and CRT algorithms where (t0, . . . , tN) is the list of evaluation
points, (p0, . . . , pi, ) is the list of distinct primes, and ā = a mod pi and b̄ = b mod pi.
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4 Optimized Ducos’ Subresultant Chain

In [9], L. Ducos examines optimizations to the classic subresultant chain algo-
rithm seen previously in Algorithm 1. The first optimization, attributed to D.
Lazard, shows that it is possible to avoid the expensive exponentiations and
their division on Line 11 of Algorithm 1. This second optimization considers the
pseudo-remainder equation of Line 15. Applying both improvements to Algo-
rithm 1 yields an efficient subresultant chain procedure that is known as Ducos’
algorithm.

Algorithm 5 Ducos Optimization (Sd, Sd−1, Se, sd)
Input: Given Sd, Sd−1, Se ∈ B[y] and sd ∈ B
Output: Se−1, the next subresultant in the subresultant chain of subres(a, b)
1: (d, e) ∶= (deg(Sd),deg(Sd−1))
2: (cd−1, se) ∶= (lc(Sd−1), lc(Se))
3: for j = 0, . . . , e − 1 do
4: Hj ∶= seyj

5: He ∶= seye − Se
6: for j = e + 1, . . . , d − 1 do

7: Hj ∶= yHj−1 − coeff(yHj−1, e)Sd−1

cd−1

8: D ∶=
d−1
∑
j=0

coeff(Sd, j)Hj
lc(Sd)

9: return (−1)d−e+1 cd−1(yHd−1+D)−coeff(yHd−1, e)Sd−1

sd

The Ducos optimization that is presented in Algorithm 5, and borrowed from
[9], is a well-known improvement of Algorithm 1 to compute subresultant Se−1 on
Line 15. This optimization provides a faster procedure to compute the pseudo-
division of two successive subresultants, namely Sd, Sd−1 ∈ B[y], and one division
by a power of lc(Sd). The main part of this algorithm is for-loops to compute:

D ∶=

d−1

∑
j=0

coeff(Sd, j)Hj

lc(Sd)
,

where coeff(Sd, j) is the coefficient of Sd in yj .

We now introduce a new algorithmic optimization for this algorithm to make
better use of memory resources through in-place arithmetic. This is shown in
Algorithm 6. In this algorithm we also extract the leading coefficient and the
tail, that is, the reductum of a polynomial with respect to its main variable
and denoted as tail, of Sd, Sd−1, and Se in-place with a procedure named In-
placeTail. This operation is essentially a coefficient shift. In this way, we reuse
existing memory allocations for the tails of polynomials Sd, Sd−1, and Se.
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Algorithm 6 Cache Friendly Ducos Optimization (Sd, Sd−1, Se, sd)
Input: Sd, Sd−1, Se ∈ B[y] and sd ∈ B
Output: Se−1, the next subresultant in the subresultant chain of subres(a, b)
1: Convert p to a recursive representation format in-place
2: (p, cd) ∶= InplaceTail(Sd)
3: (q, cd−1) ∶= InplaceTail(Sd−1)
4: (h, se) ∶= InplaceTail(Se)
5: h ∶= −h; a ∶= coeff(p, e) h
6: for i = e + 1, . . . , d − 1 do
7: if deg(h) = e − 1 then
8: h ∶= y tail(h) −ExactQuotient(lc(h) q, cd−1)
9: else h ∶= y tail(h)

10: a ∶= a + lc(coeff(p, i)) h
11: a ∶= a + se ∑e−1i=0 coeff(p, i)yi
12: a ∶= ExactQuotient(a, cd)
13: if deg(h) = e − 1 then
14: a ∶= cd−1 (y tail(h) + a) − lc(h) q
15: else a ∶= cd−1 (y h + a)
16: return (−1)d−e+1 ExactQuotient(a, sd)

Furthermore, we reduce the cost of calculating ∑d−1j=e coeff(Sd, j)Hj with com-
puting the summation iteratively and in-place in the same for-loop that is used
to update polynomial h. (lines 6-10 in Algorithm 6). We also update the value of
h depending on its degree with respect to y as deg(h) ≤ e− 1 for all e+ 1 ≤ i < d.
We utilize an optimized exact division algorithm denoted by ExactQuotient
to compute quotients rather a classical Euclidean algorithm.

5 Implementation and Experimentation

In this section, we discuss the implementation of core routines and subresultant
schemes implemented in the Basic Polynomial Algebra Subprograms (BPAS)
library [1] and compare the performance of these routines with the NTL library
[23] and Maple 2020 [18]. Throughout this section, we collect our benchmarks
on a machine running Ubuntu 18.04.4 and NTL 11.4.3 with an Intel Xeon X5650
processor running at 2.67GHz, with 12×4GB DDR3 memory at 1.33 GHz.

For basic arithmetic over a prime field Zp where p is an odd prime, Mont-
gomery multiplication, originally presented in [20], is used to speed up multi-
plication. This method avoids division by the modulus without any effect on
the performance of addition, and so, yields faster modular inverse and division
algorithms.

We have developed a dense representation of univariate polynomials which
take advantage of Montgomery arithmetic (following the implementation in [5])
for prime fields with p < 264. Figures 2, 3, 4, and 5 examine the performance
of univariate polynomial arithmetic over Zp for two randomly generated dense
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polynomials a, b and 64-bit prime p = 4179340454199820289. These plots com-
pare the various implementation within BPAS against NTL.
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BPAS_plainMul
BPAS_karatsubaMul

BPAS_FFTMul
NTL_Mul

Fig. 2: Comparing plain (BPAS plainMul),
Karatsuba (BPAS karatsubaMul), and
FFT-based (BPAS FFTMul) multiplication
algorithms in BPAS with the wrapper
mul method in NTL to compute ab for
polynomials a, b ∈ Z4179340454199820289[y]
with deg(a) = deg(b) + 1 = d.
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Fig. 3: Comparing Euclidean
(BPAS plainDiv) and Power Series divi-
sion (BPAS fastDiv) algorithms in BPAS
with the division wrapper method in NTL
to compute rem(a, b) and quo(a, b) for
polynomials a, b ∈ Z4179340454199820289[y]
with deg(a) = 2(deg(b) − 1) = d.

Multiplication over Zp[y] dynamically chooses the appropriate algorithm
based on the input polynomials: plain and Karatsuba algorithms (following the
routines in [25, Chapter 8]), or multiplication based on fast Fourier transform
(FFT). The implementation of the FFT itself follows that which was introduced
in [6]. Figure 2 shows the performance of these routines in BPAS against a sim-
ilar ”wrapper” multiplication routine in NTL for two randomly generated dense
polynomials in Zp[y].

For polynomials a, b over Zp[y] in BPAS, plain and Karatsuba algorithms
are performed when s ∶= min (deg(a),deg(b)) < 200. The Karatsuba algorithm
is also called when s ≥ 200 and p < 263. For 64-bit primes (p > 263) plain and
Karatsuba algorithms are called for s < 10 and s < 40 respectively, otherwise
FFT-based multiplication is performed. See [6] for more details about the FFT
algorithm and supported primes.

The division operation is again a wrapper function, dynamically choosing
between Euclidean (plain) and fast division algorithms. The fast algorithm is
an optimized power series inversion procedure that is firstly implemented in
Aldor [10] using the middle-product trick. Figure 3 shows the performance of
these two algorithms in comparison with the NTL division over Zp[y]. For poly-
nomials a, b over Zp[y] in BPAS, the plain division is called for primes p < 263

and deg(b) < 1000. However, for 64-bit primes and thus FFT support, the plain
algorithm is only performed when deg(b) < 100.

Our GCD operation over Zp[y] derives from both the classical EEA and
Half-GCD (fast EEA) algorithms following the pseudo-codes in [25, Chapter 11]
and the implementation in the NTL library [23]. Figure 4 shows the performance
of these two approaches named BPAS plainGCD and BPAS fastGCD, respectively,
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in comparison with the NTL GCD algorithm for polynomials a, b ∈ Zp[y] where
gcd(a, b) = 1.

To Analyze the performance of subresultant schemes of two polynomials a, b ∈
Zp[y], we compare the näıve EEA algorithm with the modular subresultant
chain and the speculative subresultant algorithm using Half-GCD technique for
ρ = 0,2 in Figure 5. As this figure shows, using Half-GCD algorithm to compute
two successive subresultants S1, S0 for ρ = 0 is approximately 5× faster than
computing the entire chain, while calculating other subresultants, e.g. S3, S2 for
ρ = 2 using the cached information, is nearly instantaneous.
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Fig. 4: Comparing Euclidean based GCD
(BPAS plainGCD) and Half-GCD based
GCD (BPAS fastGCD) algorithms in BPAS
with the GCD algorithm in NTL to com-
pute gcd(a, b) = 1 for polynomials a, b ∈
Zp[y] with deg(a) = deg(b) + 1 = d.
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Fig. 5: Comparing EEA (BPAS plainEEA),
modular subresultant (BPAS modularSRC),
and Half-GCD based subresultant
(BPAS speculativeSRC) for ρ = 0,2,
algorithms in BPAS for dense polynomials
a, b ∈ Zp[y] with deg(a) = deg(b) + 1 = d.
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subresultant chain (BPAS modularSRC),
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Fig. 7: Comparing (optimized) Ducos’ sub-
resultant chain, BPAS modularSRC using
FFT for evaluation-interpolation, and
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tant chain algorithm in Maple for dense
polynomials a, b ∈ Z[x < y] with deg(a, y) =
deg(b, y)+1 = 50 and deg(a, x) = deg(b, x)+
1 = d.
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To develop a dense representation of univariate polynomials over arbitrary-
precision integers, we use the low-level procedures of the GNU Multiple Precision
Arithmetic library (GMP) [11]. Basic dense arithmetic operations, like addition,
multiplication, and division, follows [25]. Moreover, we develop a family of subre-
sultant routines including: BPAS modularSRC, that computes the entire subresul-
tant chain using Proposition 1 and the CRT algorithm, and BPAS speculativeSRC

that refers to Algorithms 3 and 4 to compute two successive subresultants using
Half-GCD and caching techniques.

Figure 6 compares the running time of different subresultant schemes in the
BPAS library and Maple. In this figure, BPAS Ducos and BPAS OptDucos denote
the implementation of Algorithm 1 using Ducos’ optimization (Algorithm 5) and
our memory-efficient optimization (Algorithm 6), respectively. The modular ap-
proach is up to 5× faster than the optimized Ducos’ algorithm. Using speculative
algorithms to compute only two successive subresultants yields a speedup factor
of 7 for d = 2000.

We further compare our routines with the Ducos subresultant chain algo-
rithm in Maple, which is implemented as part of the RegularChains library
[16]. Table 1 shows the memory usage for computing the entire subresultant
chain of polynomials a, b ∈ Z[y], with deg(a) = deg(b)+1 = d. The table presents
BPAS Ducos (based on Algorithm 5), BPAS OptDucos (based on Algorithm 6),
and Maple Ducos. For d = 2000, results show that the optimized Ducos subre-
sultant chain algorithms are using approximately 11× and 3× less memory than
the original Ducos algorithm in Maple.

Degree BPAS Ducos BPAS OptDucos Maple Ducos

1000 1.088 0.320 3.762
1100 1.450 0.430 5.080
1200 1.888 0.563 6.597
1300 2.398 0.717 8.541
1400 2.968 0.902 10.645
1500 3.655 1.121 12.997
1600 4.443 1.364 15.924
1700 5.341 1.645 19.188
1800 6.325 1.958 23.041
1900 7.474 2.332 27.353
2000 8.752 2.721 31.793

Table 1: Comparing memory usage (GB) of Ducos’ subresultant chain algorithms for
polynomials a, b ∈ Z[y] with deg(a) = deg(b) + 1 = d in Figure 6 over Z[y].

Bivariate polynomials have also been implemented using a dense representa-
tion. A bivariate polynomial a ∈ Z[x, y] (or Zp[x, y] for a prime p) is stored as a
list of coefficients of a, possibly including zeros. Basic arithmetic follows [25] and
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subresultant algorithms follow the techniques of [19] and the previous discussion
in Section 3.

Figure 7 provides a favourable comparison between the family of subresultant
schemes in BPAS and the subresultant algorithm in Maple for dense bivariate
polynomials a, b ∈ Z[x, y] where the main degree is fixed to 50, i.e. deg(a, y) =
deg(b, y) + 1 = 50, and deg(a, x) = deg(b, x) + 1 = d for d ∈ {10,20, . . . ,100}. Note
that the BPAS speculativeSRC algorithm for ρ = 0,2,4,6 is caching the infor-
mation for the next call with taking advantage of Algorithm 4.

We next compare the two main ways of computing an subresultant chain: a
näıve approach using Algorithm 1, and a modular approach using evaluation-
interpolation and CRT (Figure 1). Figure 8 shows the performance of the näıve
approach (the top surface), with calling Optimized Ducos’ algorithm, in com-
parison with the modular approach (the bottom surface). Note that, in this
figure, interpolation may be based on Lagrange interpolation or FFT algorithms
depending on the degrees of the input polynomials. Figure 9 compares the run-
ning time of the FFT-based modular algorithm (the top surface) against the
speculative subresultant scheme based on the Half-GCD technique (the bottom
surface).
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Tables 2, 3, and 4 investigate the performance of BPAS modularSRC and
BPAS speculativeSRC schemes and the caching technique on the BPAS polyno-
mial system solver; see [2, 4]. Table 2 shows the running time of well-known and
challenging bivariate systems, forcing the solver to use only one particular subre-
sultant scheme. Among those systems, the caching ratio (SpecSRCnäıve/SpecSRCcached)
of vert lines, L6 circles, ten circles, and SA 2 4 eps are 24.5,21.6,19.8,9.2,
while the speculative ratio (ModSRCcached/SpecSRCcached) of tryme, mignotte xy,
and vert lines are 1.5,1.2, and 1.2, respectively.

Tables 3 and 4 examine the performance of the polynomial system solver
on constructed systems which aim to exploit the maximum speed-up of these
new schemes. Listing 1.1 provides the Maple code to construct these input
systems. For those systems, we get 3× speed-up through caching the inter-
mediate speculative data rather than repeatedly calling the Half-GCD algo-
rithm for each subresultant call. We got about a 1.5× speed-up with using
BPAS speculativeSRC instead of BPAS modularSRC algorithm. Another family
of constructed examples (created by Listing 1.2) is evaluated in Table 4. Here,
we get up to 3× speed-up with the use of cached data, and up to 2× speed-up
with using BPAS speculativeSRC instead of BPAS modularSRC.

n SpecSRCnaı̈ve ModSRCcached SpecSRCcached deg(src[idx]) Indexes FFTBlockSize

10 1.054 0.022 0.033 (0,5,10,15) (0,6,11,15) 128
20 3.044 0.169 0.290 (0,10,20,30) (0,11,21,30) 256
30 9.479 0.854 1.719 (0,15,30,45) (0,16,31,45) 512
40 14.602 3.612 3.086 (0,20,40,60) (0,21,41,60) 512
50 25.025 9.382 6.295 (0,25,50,75) (0,26,51,75) 512
60 82.668 22.807 23.380 (0,30,60,90) (0,31,61,90) 1024
70 105.253 23.593 30.477 (0,35,70,105) (0,36,71,105) 1024
80 156.008 36.658 47.008 (0,40,80,120) (0,41,81,120) 1024
90 236.960 133.500 73.552 (0,45,90,135) (0,46,91,135) 1024

100 272.939 171.213 83.966 (0,50,100,150) (0,51,101,150) 1024
110 370.628 280.952 117.106 (0,55,110,165) (0,56,111,165) 1024
120 1035.810 491.853 331.601 (0,60,120,180) (0,61,121,180) 2048
130 1119.720 542.905 362.631 (0,65,130,195) (0,66,131,195) 2048
140 1445.000 804.982 470.649 (0,70,140,210) (0,71,141,210) 2048
150 1963.920 1250.700 639.031 (0,75,150,225) (0,76,151,225) 2048

Table 3: Comparing the execution time (in seconds) of subresultant schemes on the
BPAS Triangularize system solver for constructed bivariate systems in Listing 1.1 to
exploit the brand-new schemes. We call optimized modular subresultant chain algo-
rithms (FFT and Lagrange) in the ModSRCcached mode, and Half-GCD based subresul-
tant algorithms in the SpecSRCnaı̈ve and SpecSRCcached modes. We do cache subresultant
information for further calls in the ModSRCcached and SpecSRCcached modes; deg(src[idx])
shows a list of the minimum main degrees of computed subresultants in each subresul-
tant call and Indexes indicates a list of requested subresultant indexes. In addition,
FFTBlockSize is the size of blocks used in the FFT-based evaluation and interpolation
algorithms.
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SysName OptDucos SpecSRCnaı̈ve ModSRCcached SpecSRCcached deg(src[idx]) Indexes

13 sings 9 3.417 3.465 3.416 3.408 (1) (0)
compact surf 10.258 26.702 11.257 10.26 (0,2,4,6) (0,3,5,6)
curve24 4.912 4.924 4.992 4.911 (0,0,1) (0,0,0)
curve issac 2.528 2.541 2.554 2.531 (0,0,1) (0,0,0)
cusps and flexes 4.488 8.374 4.656 4.656 (0,. . . ,2) (0,. . . ,2)
degree 6 surf 344.564 224.215 81.887 79.394 (0,2,4,4) (0,2,4,4)
hard one 175.847 197.283 48.359 47.213 (0,. . . ,2) (0,. . . ,2)
huge cusp 23.406 33.501 23.406 23.41 (0,2,2) (0,2,2)
L6 circles 32.347 721.49 32.906 33.422 (0,. . . ,6) (0,. . . ,6)
large curves 366.432 64.07 65.353 63.018 (0,0,1,1) (0,0,0,0)
mignotte xy 462.432 288.214 348.406 287.248 (1) (0)
SA 2 4 eps 4.123 37.937 4.141 4.122 (0,. . . ,6) (0,. . . ,6)
SA 4 4 eps 197.816 584.318 222.825 216.065 (0,. . . ,3) (0,. . . ,6)
spider 293.543 294.121 293.701 295.198 (0,0,1,1) (0,0,0,0)
spiral29 24 643.414 643.88 647.469 644.379 (1) (0)
ten circles 2.116 56.655 3.255 2.862 (0,. . . ,4) (0,. . . ,4)
tryme 4893.04 4038.539 3728.085 2415.28 (0,2) (0,2)
vert lines 1.021 24.956 1.217 1.02 (0,. . . ,6) (0,. . . ,6)

Table 2: Comparing the execution time (in seconds) of subresultant schemes on the
BPAS Triangularize solver for well-known bivariate systems in the literature. We call
optimized Ducos’ subresultant chain algorithm in the OptDucos mode, modular subre-
sultant chain algorithms (FFT and Lagrange) in the ModSRCcached mode, and Half-GCD
based subresultant algorithms in the SpecSRCnaı̈ve and SpecSRCcached modes. We do cache
subresultant information for further calls in the ModSRCcached and SpecSRCcached modes;
deg(src[idx]) shows a list of minimum main degrees of the computed subresultants in
each subresultant call and Indexes indicates a list of requested subresultant indexes.

n SpecSRCnaı̈ve ModSRCcached SpecSRCcached deg(src[idx]) Indexes FFTBlockSize

10 0.031 0.016 0.016 (0,2,2) (0,2,2) 64
20 1.544 0.909 0.898 (0,2,2) (0,2,2) 128
30 14.437 12.343 9.182 (0,2,2) (0,2,2) 256
40 114.730 39.091 32.920 (0,2,2) (0,2,2) 256
50 171.517 76.726 52.758 (0,2,2) (0,2,2) 256
60 239.964 103.391 71.991 (0,2,2) (0,2,2) 256
70 410.158 245.385 126.265 (0,2,2) (0,2,2) 512
80 651.649 361.670 206.261 (0,2,2) (0,2,2) 512
90 977.646 625.580 348.674 (0,2,2) (0,2,2) 512

100 1467.510 894.139 474.241 (0,2,2) (0,2,2) 512
110 2076.920 1259.850 675.806 (0,2,2) (0,2,2) 512
120 2757.390 1807.060 963.547 (0,2,2) (0,2,2) 512
130 4311.990 2897.150 1505.080 (0,2,2) (0,2,2) 1024
140 5881.640 4314.300 2134.190 (0,2,2) (0,2,2) 1024
150 7869.700 5177.410 2609.170 (0,2,2) (0,2,2) 1024

Table 4: Comparing the execution time (in seconds) of subresultant schemes on the
BPAS Triangularize system solver for constructed bivariate systems in Listing 1.2 to
exploit the brand-new schemes. We call optimized modular subresultant chain algo-
rithms (FFT and Lagrange) in the ModSRCcached mode, and Half-GCD based subresul-
tant algorithms in the SpecSRCnaı̈ve and SpecSRCcached modes. We do cache subresultant
information for further calls in the ModSRCcached and SpecSRCcached modes; deg(src[idx])
shows a list of the minimum main degrees of computed subresultants in each subresul-
tant call and Indexes indicates a list of requested subresultant indexes. In addition,
FFTBlockSize is the size of blocks used in the FFT-based evaluation and interpolation
algorithms
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1 SystemGenerator1 := proc(n)

2 local R := PolynomialRing ([x,y]);

3 local J := PolynomialIdeals:-Intersect(<x^2+1,xy+2>,

4 <x^2+3,xy^floor(n/2)+floor(n/2)+1>);

5 J := PolynomialIdeals:-Intersect(J, <x^2+3,xy^n+n+1>);

6 local dec := Triangularize(Generators(J),R);

7 dec := map(NormalizeRegularChain ,dec ,R);

8 dec := EquiprojectableDecomposition ([%[1][1] ,%[2][1]] ,R);

9 return map(expand , Equations(op(dec),R));

10 end proc:

Listing 1.1: Maple code of constructed polynomials in Table 3.

1 SystemGenerator2 := proc(n)

2 local R := PolynomialRing ([x,y]);

3 local f := randpoly ([x],dense ,coeffs=rand ( -1..1),degree=n);

4 local J := <f,xy+2>;

5 J := PolynomialIdeals:-Intersect(J,<x^2+2 ,(x^2+3x+1)y^2+3 >)

6 local dec := Triangularize(Generators(J),R);

7 dec := map(NormalizeRegularChain ,dec ,R);

8 dec := EquiprojectableDecomposition ([%[1][1] ,%[2][1]] ,R);

9 return map(expand ,Equations(op(dec),R));

10 end proc:

Listing 1.2: Maple code of constructed polynomials in Table 4.
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