Complexity Estimates for Fourier-Motzkin

Elimination

Rui-Juan Jing! Marc Moreno-Maza? Delaram Talaashrafi®
1 Jiangsu University, Zhenjiang, China rjing@ujs.edu.cn,
2 Western University, London, Canada moreno@csd.uwo.ca,

3 Western University, London, Canada dtalaash@uwo.ca

June 16, 2020

Abstract

In this paper, we propose an efficient method for removing all redundant
inequalities generated by Fourier-Motzkin Elimination. This method is based
on an improved version of Balas’ work and can also be used to remove all
redundant inequalities in the input system. Moreover, our method only uses
arithmetic operations on matrices and avoids resorting to linear programming
techniques. Algebraic complexity estimates and experimental results show
that our method outperforms alternative approaches, in particular those based
on linear programming and the simplex algorithm.

Keywords: Polyhedral set, Fourier-Motzkin Elimination, Algebraic complex-
ity, Efficient implementation

1 Introduction

Polyhedral sets play an important role in computational sciences. For instance,
they are used to model, analyze, transform and schedule for-loops of computer
programs; we refer to the articles [13] 14} 17, [3, [l [2, [34]. Of prime importance are
the following operations on polyhedral sets: (i) conversion between H-representation
and V-representation (performed, for instance, by the double description method);
and (ii) projection, as performed by Fourier-Motzkin Elimination.

Although the double description method and Fourier-Motzkin Elimination have
a lot in common, and, they are considered as the same algorithm in the paper [7]
of Winfried Bruns and Bogdan Ichim, they are not totally similar. Quoting Komei
Fukuda and Alian Prodon from [I6]: ”the FME algorithm is more general than the
DD method, but often considered as the same method partly because it can be used
to solve the extreme ray enumeration problem”.

Fourier-Motzkin Elimination is an algorithmic tool for projecting a polyhedral
set onto a linear subspace. It was proposed independently by Joseph Fourier and
Theodore Motzkin, respectively in 1827 and 1936. See the paper [12] of George
Danzing and Section 12.2 of in the book [31] of Alexander Schrijver, for a presentaion
of Fourier-Motzkin Elimination. The original version of this algorithm produces

large amounts of redundant inequalities and has a double exponential algebraic
complexity. Removing all these redundancies is equivalent to giving the minimal
representation of the projection of a polyhedron. Leonid Khachiyan explained in [24]
how linear programming (LP) could be used to remove all redundant inequalities,
thereby reducing the cost of Fourier-Motzkin Elimination to a number of machine
word operations singly exponential in the dimension of the ambient space. However,
Khachiyan did not state a more precise running time estimate taking into account
the characteristics of the polyhedron being projected, such as the number of its
facets.

As we shall prove in this paper, rather than using linear programming one may
use only matrix arithmetic, increasing the theoretical and practical efficiency of
Fourier-Motzkin Elimination while still producing an irredundant representation of
the projected polyhedron.

Other algorithms for projecting polyhedral sets remove some (but not all) redun-
dant inequalities with the help of extreme rays: see the work of David A. Kohler [25].
As observed by Jean-Louis Imbert in [20], the method he proposed in that paper
and that of Sergei N. Chernikov in [I0] are equivalent. On the topic of finding ex-
treme rays of a polyhedral set in H-representation, see Nataija V. Chernikova [11],
Hervé Le Verge [26] and Komei Fukuda [16]. These methods are very effective
in practice, but none of them can remove all redundant inequalities generated by
Fourier-Motzkin Elimination.

Fourier-Motzkin Elimination is well suited for projecting a polyhedron, described
by its facets (given by linear inequalities), onto different sub-spaces. And our paper
is about projecting polyhedral sets to lower dimensions, eliminating one variable
after another, thanks to Fourier-Motzkin Elimination algorithm as described in
Schrijver’s book [3I]. In fact, our goal is to find the so-called minimal representa-
tions of all of the successive projections of a given polyhedron (in H-representation,
thus given by linear inequalities), by eliminating variables one after another, using
the Fourier-Motzkin Elimination algorithm. Computing these successive projections
has applications in the analysis, scheduling and transformation of for loop nests of
computer programs. For instance, after applying a uni-modular transformation to
the loop counters of a for loop nest, the loop bounds of the new for loop nest are
derived from the successive projections of a well-chosen polyhedron.

In this paper, we show how to remove all the redundant inequalities generated
by Fourier-Motzkin Elimination. Our approach is based on an improved version of
Balas’ work [I] . To be more specific, we first compute a so-called initial redundancy
test cone, from which we can derive the so-called redundancy test cone, which is used
to detect the redundant inequalities generated after each elimination of a variable.

Consider as input a full-dimensional pointed polyhedron Q C Q", given by a sys-
tem of m linear inequalities of height h. We show, see Theorem [5] that eliminating
the variables from that system, one after another (thus performing Fourier-Motzkin
Elimination) can be done within O(m % nf+t1+<p1+€) bit operations, for any € > 0,
where 6 is the exponent of linear algebra.

Therefore, we obtain a more favourable estimate than the one presented in [21],
22] for Fourier-Motzkin Elimination with a removal of the redundant inequalities via
linear programming. Indeed, in those papers, the estimate is O(n? m?™ LP(n, 2"hn?m™))
bit operations, where LP(d, H) is an upper bound for the number of bit opera-
tions required for solving a linear program with total bit size H and with n vari-

ables. For instance, in the case of Karmarkar’s algorithm [23], we have LP(d, H) €
O(d®®H?-log H -loglog H). Then, comparing the exponents of m, n and h, we have
57”, 0+ 1+ ¢, 1 + e respectively with the method proposed in the present paper and
dn+ €, 6+ ¢, 2+ € respectively with the estimate of [21, [22].

Our algorithm is stated in Section[d]and follows a revisited version of Balas’ algo-
rithm presented in Section|3] Since the maximum number of facets of any standard
projection of @ is O(mL"/ 2J)7 our running time for Fourier-Motzkin Elimination is
satisfactory; the other factors in our estimate come from the cost of linear algebra
operations for testing redundancy.

We have implemented the algorithms proposed in Section [4] using the BPAS
library [9] publicly available at www.bpaslib.org. We have compared our code
against other implementations of Fourier-Motzkin Elimination including the CDD
library [I5]. Our experimental results, reported in Section@ show that our proposed
method can solve more test-cases (actually all) that we used while the counterpart
software failed to solve some of them.

Section [2] provides background materials about polyhedral sets and polyhedral
cones together with the original version of Fourier-Motzkin Elimination. Section
contains a revisited version of Balas’ method and detailed proofs of its correctness.
Based on this, Section [] presents a new algorithm producing a minimal projected
representation for a given full-dimensional pointed polyhedron. Complexity results
are established in Section [5] In Section [6] we report on our experimentation and in
Section [we discuss related works.

To summarize, our contributions are: (i) making Balas’ algorithm to be practi-
cal, by devising a method for finding the initial redundancy test cone efficiently and
using it in the Fourier-Motzkin Elimination, (ii) exhibiting the theoretical efficiency
of the proposed algorithm by analyzing its bit complexity, and, (iii) demonstrating
its practical effectiveness (implemented as part of the BPAS library) compared to
other available related software

2 Background

In this section, we review the basics of polyhedral geometry. Section[2.1]is dedicated
to the notions of polyhedral sets and polyhedral cones. Sections and review
the double description method and Fourier-Motzkin elimination, which are two of
the most important algorithms for operating on polyhedral sets. We conclude this
section with the cost model that we shall use for complexity analysis, see Section[2.4]
As we omit most proofs, for more details please refer to [31),[33] [16]. For the sake of
simplicity in the complexity analysis of the presented algorithms, we constraint our
coefficient field to the field of rational numbers Q. However, all of the algorithms
presented in this paper apply to polyhedral sets with coefficients in the field real
numbers R.

2.1 Polyhedral cones and polyhedra

We use bold letters, e.g. v, to denote vectors and we use capital letters, e.g. A, to
denote matrices. Also, we assume that vectors are column vectors. For row vectors,
we use the transposition notation, that is, A? for the transposition of matrix A. For

www.bpaslib.org

a matrix A and an integer k, Ay is the row of index k in A. Also, if K is a set of
integers, Ax denotes the sub-matrix of A with row indices in K.

Polyhedral cone. A subset of points C C Q" is called a cone if for each x € C
and each real number A > 0 we have Ax € C. A cone C C Q" is called convex
if for all x,y € C, we have x +y € C. If C C Q" is a convex cone, then its
elements are called the rays of C. For two rays r and r’ of C, we write r’ ~ r
whenever there exists A > 0 such that we have r’ = Ar. A cone C C Q" is a
polyhedral cone if it is the intersection of finitely many half-spaces, that is, C' =
{z € Q" | Az < 0} for some matrix A € Q™*". Let {x1,...,X,,} be a set of
vectors in Q". The cone generated by {x1,...,%X}, denoted by Cone(x1,- -+ ,Xm),
is the smallest convex cone containing those vectors. In other words, we have
Cone(X1,...,Xm) ={ X1+ +AmXm | A1 >0,..., A > 0}. A cone obtained in
this way is called a finitely generated cone.

Polyhedron. A set of vectors P C Q" is called a convex polyhedron if P =
{x | Ax < b}, for a matrix A € Q™*" and a vector b € Q™. Moreover, the
polyhedron P is called a polytope if P is bounded. From now on, we always use
the notation P = {x | Ax < b} to represent a polyhedron in Q". The system of
linear inequalities {Ax < b} is called a representation of P. We say an inequality
c'x < ¢g is redundant w.r.t. a polyhedron representation Ax < b if it is implied
by Ax < b. A representation of a polyhedron is minimal if no inequality of that
representation is implied by the other inequalities of that representation. To obtain
a minimal representation for the polyhedron P, we need to remove all the redundant
inequalities in its representation. This requires the famous Farkas’ lemma. Since
it has many different variants, here we only mention a variant from [31], which is
applicable in the next algorithms.

Lemma 1 (Farkas’ lemma) Let A € Q™" be a matriz and b € Q™ be a vector.
Then, there exists a vector t € Q", t > 0 satisfying At = b if and if y'b > 0 holds
for each vector y € Q™ such that we have y'A > 0.

A consequence of Farkas’ lemma is the following criterion for testing whether an
inequality c*x < ¢p is redundant w.r.t. a polyhedron representation Ax < b.

Lemma 2 (Redundancy test criterion) Let ¢ € Q", ¢y € Q, A € Q™ " and
b € Q™. Then, the inequality c'x < cq is redundant w.r.t. the system of inequalities
Ax < b if and only if there exists a vector t > 0 and a number X > 0 satisfying
cl =t'A and ¢y = t'b +).

Characteristic Cone and Pointed Polyhedron.The characteristic cone of P is
the polyhedral cone denoted by CharCone(P) and defined by CharCone(P) = {y €
Q" |x+ye€P vxe P} ={y| Ay < 0}. The linearity space of the polyhedron
P is the linear space denoted by LinearSpace(P) and defined as CharCone(P) N
—CharCone(P) = {y | Ay = 0}, where —CharCone(P) is the set of the —y for
y € CharCone(P). The polyhedron P is pointed if its linearity space is {0}.

Lemma 3 (Pointed polyhedron criterion) The polyhedron P is pointed if and
only if the matriz A is full column rank.

Extreme point and extreme ray. The dimension of the polyhedron P, denoted
by dim(P), is the maximum number of linearly independent vectors in P. We say

that P is full-dimensional whenever dim(P) = n holds. An inequality a'x < b
(with a € Q" and b € Q) is an implicit equation of the inequality system Ax < b if
alx = b holds for all x € P. Then, P is full-dimensional if and only if it does not
have any implicit equations. A subset I’ of the polyhedron P is called a face of P if
F equals {x € P | AqubXx = bgyp} for a sub-matrix Ag,p, of A and a sub-vector by,
of b. A face of P, distinct from P and of maximum dimension is called a facet of P.
A non-empty face that does not contain any other face of a polyhedron is called a
minimal face of that polyhedron. Specifically, if the polyhedron P is pointed, each
minimal face of P is just a point and is called an extreme point or vertex of P. Let
C be a cone such that dim(LinearSpace(C)) = t. Then, a face of C of dimension
t + 1 is called a minimal proper face of C. In the special case of a pointed cone,
that is, whenever ¢ = 0 holds, the dimension of a minimal proper face is 1 and
such a face is called an eztreme ray. We call an extreme ray of the polyhedron P
any extreme ray of its characteristic cone CharCone(P). We say that two extreme
rays r and r’ of the polyhedron P are equivalent, and denote it by r ~ r’, if one is
a positive multiple of the other. When we consider the set of all extreme rays of
the polyhedron P (or the polyhedral cone C) we will only consider one ray from
each equivalence class. A pointed cone C can be generated by its extreme rays,
that is, we have C' = {x € Q" | (3c > 0) x = Rc}, where the columns of R are
the extreme rays of C. We denote by ExtremeRays(C') the set of extreme rays of
the cone C. Recall that all cones considered here are polyhedral. The following,
see [28], [33], is helpful in the analysis of algorithms manipulating extreme rays of
cones and polyhedra. Let F(C) be the number of extreme rays of a polyhedral cone
C € Q" with m facets. Then, we have:

E(C) < <m - Ln;rlj) + (m - LnJ2r2J> < ml%l, (1)

m—1 m-n

Algebraic test of (adjacent) extreme rays. Given a cone C = {x € Q" | Ax <
0} and t € C, we define the zero set (4(t) as the set of row indices i such that
At =0, where A; is the i-th row of A. For simplicity, we use ((t) instead of {4(t)
when there is no ambiguity. The proof of the following, which we have so-called the
algebraic test, can be found in [I6]: Let r € C. Then, the ray r is an extreme ray
of C if and only if we have rank(A¢(,)) = n — 1. Two distinct extreme rays r and
r’ of the polyhedral cone C' are called adjacent if they span a 2-dimensional face of
C. From [16], we have: Two distinct extreme rays, r and r’, of C' are adjacent if
and only if rank(A¢(ryn¢r)) = n — 2 holds.

Polar cone. Given a polyhedral cone C C Q", the polar cone induced by C,
denoted by C*, is defines as: C* = {y € Q" | y’x < 0,Vx € C}. The proof of
the following property can be found in [31I]: For a given cone C' € Q", there is a
one-to-one correspondence between the faces of C' of dimension k and the faces of
C* of dimension n — k. In particular, there is a one-to-one correspondence between
the facets of C' and the extreme rays of C*.

Homogenized cone. The homogenized cone of the polyhedron P = {x € Q" | Ax <
b} is denoted by HomCone(P) and defined by: HomCone(P) = {(x, Z1ast) € Q" | Ax—
b < 0, Tyast > 0}

Lemma 4 (H-representation correspondence) An inequality A;x < b; is re-
dundant in P if and only if the corresponding inequality A;x — b;X1asy < 0 is redun-
dant in HomCone(P).

Theorem 1 (Extreme rays of the homogenized cone) Every extreme ray of
the homogenized cone HomCone(P) associated with the polyhedron P is either of the
form (x,0) where x is an extreme ray of P, or (x,1) where X is an extreme point
of P.

2.2 The double description method

It follows from Section that any pointed polyhedral cone C' can be represented
either as the intersection of finitely many half-spaces (given as a system of linear
inequalities Ax < 0 and called H-representation of C) or as Cone(R), where R is a
matrix, the columns of which are the extreme rays of C (called V-representation of
(). The double description method, proposed by Komei Fukuda in [I6] and imple-
mented in the CDD library, produces the V-representation of a pointed polyhedral
cone given in the H-representation. Some of the results presented in our paper de-
pend on an algebraic complexity estimate for the double description method. In [16],
one can find an estimate in terms of arithmetic operations on the coefficients of the
input H-representation. Since we need a bit complexity estimate, we provide one
as Lemma 8 A proof for it can be found in Section [§]and a brief review of the DD
method is given in Appendix page

2.3 Fourier-Motzkin elimination

Let A € Q™*? and B € Q™*? be matrices. Let ¢ € Q™ be a vector. Consider
the polyhedron P = {(u,x) € Q°"? | Au+ Bx < c}. We denote by proj(P;x)
the projection of P on x, that is, the subset of Q7 defined by proj(P;x) = {x €
QY] Fue? (ux)e P}

Fourier-Motzkin elimination (FME for short) is an algorithm computing the pro-
jection proj(P;x) of the polyhedron of P by successively eliminating the u-variables
from the inequality system Au—+ Bx < c. This process shows that proj(P;x) is also
a polyhedron.

Let ¢4, {5 be two inequalities: a1x1+- -+ apz, < ¢y and byxi+---+b,x, < co.
Let 1 < i < n such that the coefficients a; and b; of z; in /1 and /5 are positive
and negative, respectively. The combination of ¢; and ¢35 w.r.t. xz;, denoted by
Combine(¢y, 5, x;), is:

—bi(a1z1 + -+ anxn) + a;j(brzy + - - + bpxy) < —bjey + aica.

Theorem [2 shows how to compute proj(P;x) when u consists of a single variable
x;. When u consists of several variables, FME obtains the projection proj(P;x) by
repeated applications of Theorem [2]

Theorem 2 (Fourier-Motzkin theorem [25]) Let A € Q™" be a matriz and
let c € Q™ be a vector. Consider the polyhedron P = {x € Q" | Ax < c¢}. Let
S be the set of inequalities defined by Ax < c. Also, let 1 < i < n. We partition
S according to the sign of the coefficient of x;: ST = {£ € S | coeff(¢,x;) > 0},
S=={te S| coeff(¢,z;) <0} and S° = {¢ € S | coeff(¢,z;) = 0}. We construct
the following system of linear inequalities:

S’ = {Combine(sy, $n, 7;) | (8p,sn) € ST x S7} U S°.

Then, S’ is a representation of proj(P; {x \ {x;}}).

With the notations of Theorem [2| assume that each of ST and S~ counts £
inequalities. Then, the set S’ counts (%)2 inequalities. After eliminating p variables,
the projection would be given by O((%)zp) inequalities. Thus, FME is double
exponential in p.

On the other hand, from [29] and [22], we know that the maximum number of
facets of the projection on Q" * of a polyhedron in Q" with m facets is O(m!™/2!).
Hence, it can be concluded that most of the generated inequalities by FME are
redundant. Eliminating these redundancies is the main subject of the subsequent
sections.

2.4 Cost model

for any rational number ¢, thus with b # 0, we define the height of 7, denoted
as height(¢), as logmax(lal, |b]). For a given matrix A € Q™*", let ||A|| denote
the infinite norm of A, that is, the maximum absolute value of a coefficient in A.
We define the height of A, denoted by height(A) := height(]|4||), as the maximal
height of a coefficient in A. For the rest of this section, our main reference is the
PhD thesis of Arne Storjohann [32]. Let k be a non-negative integer. We denote
by M (k) an upper bound for the number of bit operations required for performing
any of the basic operations (addition, multiplication, and division with reminder)
on input a,b € Z with |a|, |b| < 2*. Using the multiplication algorithm of Arnold
Schénhage and Volker Strassen [30] one can choose M(k) € O(klogkloglog k).

We also need complexity estimates for some matrix operations. For positive
integers a, b, ¢, let us denote by MM/(a,b,c) an upper bound for the number of
arithmetic operations (on the coefficients) required for multiplying an (a x b)-matrix
by an (b x ¢)-matrix. In the case of square matrices of order n, we simply write
MM (n) instead of MM (n,n,n). We denote by 6 the exponent of linear algebra,
that is, the smallest real positive number such that MM (n) € O(n?).

In the following, we give complexity estimates in terms of M(k) € O(klog kloglog k)
and B(k) = M(k)logk € O(k(logk)?loglogk). We replace every term of the
form (log k)P (log log k)?(log loglog k)", (where p, ¢, r are positive real numbers) with
O(k¢) where € is a (positive) infinitesimal. Furthermore, in the complexity es-
timates of algorithms operating on matrices and vectors over Z, we use a pa-
rameter (3, which is a bound on the magnitude of the integers occurring dur-
ing the algorithm. Our complexity estimates are measured in terms of machine
word operations. Let A € Z™*™ and B € Z™*P. Then, the product of A by B
can be computed within O(MM (m,n,p)(log 8) + (mn + np + mp)B(log 8)) word
operations, where 8 = n||A]| ||B]| and ||A] (resp. |B]||) denotes the maximum
absolute value of a coefficient in A (resp. B). Neglecting logarithmic factors,
this estimate becomes O(max(m,n,p)’ max(ha,hy)) where ha = height(4) and
hp = height(B). For a matrix A € Z™*", a cost estimate of Gauss-Jordan trans-
form is O(nmr®=2(log B) +nm(logr)B(log B)) word operations, where r is the rank
of the input matrix A and 8 = (y/r||A|))". Let h be the height of A, for a matrix
A € Z™*", with height h, the rank of A is computed within O(mn®*¢h1*€) word
operations, and the inverse of A (when this matrix is invertible over Q and m = n)
is computed within O(m?*t'*+¢h1*¢) word operations. Let A € Z™*" be an integer

matrix, which is invertible over Q. Then, the absolute value of any coefficient in
A~! (inverse of A) can be bounded up to (v/n — 1||A||"~V).

3 Revisiting Balas’ method

As recalled in Section [2, FME produces a representation of the projection of a
polyhedron by eliminating one variable at a time. However, this procedure generates
lots of redundant inequalities limiting its use in practice to polyhedral sets with a
handful of variables only. In this section, we propose an efficient algorithm which
generates a minimal representation of a full-dimensional pointed polyhedron, as
well as its projections. Through this section, we use @ to denote a full-dimensional
pointed polyhedron in Q™, where

Q:{(H,X)EprQq‘Au+BX§C}, (2)

with 4 € Q™*?, B € Q™*? and ¢ € Q™. Thus, Q has no implicit equations
in its representation and the coefficient matrix [A, B] has full column rank. Our
goal in this section is to compute the minimal representation of the projection
proj(Q;x) given by proj(Q;x) := {x | Ju,s.t.(u,x) € Q}. We call the cone C :=
{y €eQm |y'A=0 and y > 0} the projection cone of) w.r.t.u. When there is no
ambiguity, we simply call C' the projection cone of). Using the following so-called
projection lemma, we can compute a representation for the projection proj(Q;x):

Lemma 5 ([I0]) The projection proj(Q;x) of the polyhedron @ can be represented

by
S :={y'Bx < y'c,Vy € ExtremeRays(C)},

where C' is the projection cone of Q defined above.

Lemma [5| provides the main idea of the block elimination method. However, the
represention produced in this way may have redundant inequalities. In [I], Balas
observed that if the matrix B is invertible, then we can find a cone such that its
extreme rays are in one-to-one correspondence with the facets of the projection of
the polyhedron (the proof of this fact is similar to the proof of our Theorem .
Using this fact, Balas developed an algorithm to find all redundant inequalities for
all cases, including the cases where B is singular.

In this section, we will explain the Balas’ algorithm E| in detail. To achieve
this, we lift the polyhedron @) to a space in higher dimension by constructing the
following objects.

Construction of By. Assume that the first ¢ rows of B, denoted as Bi, are inde-
pendent. Denote the last m — g rows of B as By. Add m —q columns, eg;1,...,€n,
to B, where e; is the i-th vector in the canonical basis of Q™, thus with 1 in the
i-th position and 0’s anywhere else. The matrix By has the following form:

By 0

By =
By Ip_q

1 1t should be noted that, although we are using his idea, we have found a flaw in Balas’ paper.
In fact, the last inequality in representation of W9 is written as equality that paper.

To maintain consistency in the notation, let Ag = A and ¢y = c.
Construction of Q°. We define:

Q% :={(u,x') € Q” x Q" | Apu+ Box' < ¢y, 2411 ==y =0}

From now on, we use x’ to represent the vector x € Q7, augmented with m — ¢
variables (2g41,...,2Tm). Since the extra variables (xq41,...,%n) are assigned to
zero, we note that proj(Q;x) and proj(Q°;x’) are “isomorphic” by means of the
bijection ®:

proj(Q; x) — proj(Q% x’)

d:
(x1,...,2q) = (T1,...,24,0,...,0)

In the following, we will treat proj(Q;x) and proj(Q°;x’) as the same polyhedron
when there is no ambiguity.

Construction of W°. Define W to be the set of all (v,w,v5) € Q? x Q" 7 x Q
satisfying

WO = {(V,W,’Uo) ‘ [vt7wt]Bo_1A0 - O, [Vt7Wt]BO_1 Z 07
— [v',w'|By teo + v > 0}

3)

Similar to the discussion in Balas’ work, the extreme rays of the cone proj(W?; {v, vo})
are used to construct the minimal representation of the projection proj(Q;x).

Theorem |3 shows that extreme rays of the cone proj(W%; {v,vo}), which is de-
fined as

proj(WO: {v,v}) := {(v, —vo) | (v,v0) € proj(W? {v,vo})},

are in one-to-one correspondence with the facets of the homogenized cone of proj(Q; x).
As a result its extreme rays can be used to find the minimal representation of
HomCone(proj(Q; x)).

Theorem 3 The polar cone of HomCone(proj(Q;x)) is equal to proj(W; {v, vo}).
Proof > Please refer to Section <

Theorem 4 The minimal representation of proj(Q;x) is given exactly by
{vix < g | (v,v0) € ExtremeRays(proj(IW; (v, v))) \ {(0,1)}}.

Proof > By Theorem 3] a minimal representation of the homogenized cone HomCone(proj(Q; x))
is given exactly by {vx—vgT1ast < 0] (V,v9) € ExtremeRays(proj(W?; (v,v9)))}. Us-
ing Lemma any minimal representation of HomCone(proj(Q;x)) has at most one
more inequality than any minimal representation of proj(Q;x). This extra inequal-
ity would be Z1.s; > 0 and, in this case, proj(W?; (v,vp)) would have the extreme
ray (0,1), which can be detected easily. Therefore, a minimal representation of
proj(Q; x) is given by {vix < vg | (v,) € ExtremeRays(proj(W?; (v, v0)))\{(0,1)}}.
<

For simplicity, we call the cone proj(W?; {v,vo}) the redundancy test cone of Q
w.r.t. u and denote it by Py(Q). When u is empty, we define P(Q) := Pu(Q) and
we call it the initial redundancy test cone. It should be noted that P(Q) can be
used to detect redundant inequalities in the input system, as it is shown in Steps 3]
to [§ of Algorithm [3]

4 Minimal representation of the projected polyhe-
dron

In this section, we present our algorithm for removing all the redundant inequalities
generated during Fourier-Motzkin elimination. Our algorithm detects and elim-
inates redundant inequalities, right after their generation, using the redundancy
test cone introduced in Section Intuitively, we need to construct the cone W?°
and obtain a representation of the redundancy test cone, Py,(Q), where u is the
vector of eliminated variables, each time we eliminate a variable during FME. This
method is time consuming because it requires to compute the projection of W0
onto {v, vy} space at each step. However, as we prove in Lemma@ we only need to
compute the initial redundancy test cone, using Algorithm [I} and the redundancy
test cones, used in the subsequent variable eliminations, can be found incrementally
without any extra cost. After generating the redundancy test cone, the algorithm,
using Algorithm [2] keeps the newly generated inequality only if it is an extreme ray
of the redundancy test cone.

Note that a byproduct of this process is the minimal projected representation
of the input system, according to the specified variable ordering. This represen-
tation is useful for finding solutions of linear inequality systems. The projected
representation was introduced in [2I], 22] and will be reviewed in Definition

For convenience, we rewrite the input polyhedron () defined in Equation as:
Q={yecQ"| Ay <c},where A=[A4,B e Q™" n=p+qgandy = [u},x]' €
Q™. We assume the first n rows of A are linearly independent.

Algorithm 1 Generate initial redundancy test cone

Input: S = {Ay < c}, a representation of the input polyhedron Q;
Output: P, a representation of the initial redundancy test cone;
1: Construct Ay in the same way we constructed By, that is, Ay := [A, A'], where
A’ =lent1,---,€m] with e; being the i-th vector of the canonical basis of Q™;

2: Let W := {(v,w,19) € Q"xQ™ " xQ | —[v},w!]A; c+vg >0, [v},wl]A;" >
0};

3 P = proj(IV' {v, o))

4: return (P);

Remark 1 There are two important points about Algorithm[1 First, we only need
a representation of the initial redundancy test cone. This representation does not
need to be minimal. Therefore, calling Algorithm mn Algom'thm@ (which computes
a minimal projected representation of a polyhedron) does not lead to a recursive
call to Algorithm @ Second, to compute the projection proj(W;{v,vg}), we need to
eliminate m — n variables from m + 1 inequalities. The block elimination method is
applied to achieve this. As it is shown in Lemma[3, the block elimination method
will require to compute the extreme rays of the projection cone (denoted by C),
which contains m + 1 inequalities and m + 1 variables. However, considering the
structural properties of the coefficient matriz of the representation of C, we found
that computing the extreme rays of C is equivalent to computing the extreme rays

10

of another simpler cone, which still has m + 1 inequalities but only n+ 1 variables.
For more details, please refer to Step 3 of Section [8.5,

Lemma 6 Representation of the redundancy test cone Py(Q) can be obtained from
P(Q) by setting coefficients of the corresponding p eliminated variables to 0 in the
representation of P(Q).

Proof 1> Please refer to Section <
For the polyhedron @, given a variable order y; > - > y,, for 1 < i < n, we
denote by Q¢ the inequalities in the representation of Q whose largest variable is

Yi-

Definition 1 (Projected representation) Projected representation of @ w.r.t.

the variable order y; > -+ > y,, denoted ProjRep(Q;y1 > -+ > yn), is a linear sys-

tem given by QWY ifn = 1, and is the conjunction of QY1) and ProjRep(proj(Q;y2); y2 >
- > y,) otherwise. We say that P := ProjRep(Q;y1 > -+ > y,) is the mini-

mal projected representation if, for all 1 < k < n, every inequality of P with yi

as largest variable is not redundant among all the inequalities of P with variables

among Y, - - -, Yn -

We can generate the minimal projected representation of a polyhedron by Algo-
rithm Bl

Algorithm 2 Extreme ray test

Input: (P,¢), where (i) P := {(v,v9) € Q" x Q | M[v!,v]" < 0} with M €
Q™ M+ (if) ¢ : aly < ¢ with a € Q" and ¢ € Q;
Output: true if [al,]’ is an extreme ray of P, false otherwise;
: Let s := M[a’, c]';
Let ¢(s) be the index set of the zero coefficients of s;
if rank(M¢()) = n then
return (true);
else

return (false);
end if

5 Complexity estimates

We analyze the computational complexity of Algorithm [3] which computes the min-
imal projected representation of a given polyhedron. This computation is equivalent
to eliminating all variables, one after another, in Fourier-Motzkin elimination. We
prove that using our algorithm, finding the minimal projected representation of a
polyhedron is singly exponential in the dimension n of the ambient space. The
most consuming procedure in Algorithm [3] is finding the initial redundancy test
cone. This operation requires another polyhedron projection in higher dimension.
As it is shown in Remark |1} we can use block elimination method to perform this
task efficiently. This requires the computation of the extreme rays of the projection
cone. The double description method is an efficient way to solve this problem. We

11

Algorithm 3 Minimal Projected Representation of)

Input: S ={Ay < c}: arepresentation of the input polyhedron Q;
Output: A minimal projected representation of Q;
1: Generate the initial redundancy test cone P by Algorithm
2: So:={}
3: for i from 1 to m do
4: Let f be the result of applying Algorithm [2] with the inputs P and A;y < ¢;;

5: if f = true then

6: So =S U{Ajy <ci};

7. end if

8: end for

9: P:= P|U1:0;

10: for i from 0 ton — 1 do

11: Si+1 = { };

12: for l,os € S; with positive coefficient of y;4; do
13: for /e € S; with negative coefficient of y; 41 do
14: lnew = Combine(lpos, bneg: Yit1);

15: Let f be the result of applying Algorithm [2] with the inputs P and lpew;
16: if f = true then

17: Sit1 = Siy1 U {lnew}:

18: end if

19: end for

20: end for
21: for ¢ € S; with zero coefficient of y;;1 do

22: Let f be the result of applying Algorithm [2| with the inputs P and ¢ ;
23: if f = true then

24: Si-i—l = Si-i—l U {f},

25: end if

26: end for

27: P=P vip1=03

28: end for

29: return (SoUS; U---USy,);

begin this section by computing the bit complexity of the double description algo-
rithm. For detailed explanation of the double description method, please refer to

Section [B.71

Lemma 7 (Coefficient bound of extreme rays) Let S = {x € Q" | Ax < 0}
be the minimal representation of a cone C C Q", where A € Q™*™. Then, the

absolute value of a coefficient in any extreme ray of C is bounded over by (n —
Lm{|A|P.

Proof > Please refer to Section B3] <

Lemma 8 Let S = {x € Q" | Ax < 0} be the minimal representation of a cone C C
Q", where A € Q™*". The double description method requires O(m"+2nf+epl+e)
bit operations, where h is the height of the matriz A.

12

Proof > Please refer to Section N

Lemma 9 (Complexity of constructing the initial redundancy test cone)
Let h be the mazimum height of A and c in the input system, then generating the ini-
tial redundancy test cone (Algorithm[1)) requires at most O(m"+3+¢(n + 1)0+<pl+e)
bit operations. Moreover, proj(W;{v,vo}) can be represented by O(mL%J) inequal-
ities, each with a height bound of O(mn**<h).

Proof > Please refer to Section [8.5] <1
Lemma 10 Algorithm[9 runs within O(m%n®T<h*€) bit operations.

Proof > Please refer to Section [B.6] <1
Using Algorithms [If and [2] we can find the minimal projected representation of
a polyhedron in singly exponential time w.r.t. the number of variables n.

Theorem 5 Algorithm[3 is correct. Moreover, a minimal projected representation
. . 5n . .
of Q can be produced within O(m = n+t1Tepl*e) bit operations.

Proof > Correctness of the algorithm follows from Theorem [4, Lemma [6}

By [20, 25], we know that after eliminating p variables, the projection of the
polyhedron has at most mP*! facets. For eliminating the next variable, there will
be at most (%ﬂ)2 pairs of inequalities to be considered and each of the pairs
generate a new inequality which should be checked for redundancy. Therefore,

overall the complexity of the algorithm is:
O(mn+3+e(n + 1)0+eh1+e) + Z” Om2p+20(m%n0+eh1+e) _ O(m%n0+1+ehl+e).
p:

<

6 Experimentation

In this section we report on our software implementation of the algorithms presented
in the previous sections. Our implementation as well as our test cases are part of
the BPAS library, available at http://www.bpaslib.org/.

We present the serial and the parallel running time for the Minimal Projected
Representation (MPR) algorithm. Comparing with the Project method of the
PolyhedralSets package of Maple 2017 and the famous CDD library (version 2018),
we have been able to solve problems more efficiently. We believe that this is the
result of using a more effective algorithm and an efficient implementation in C.

As test cases we use 16 consistent linear inequality systems. The first 9 test
cases, (t1 to t9) are linear inequality systems with random coefficients. The systems
S24 and S35 are 24-simplex and 35-simplex polytopes, C56 and C510 are cyclic
polytopes in dimension five with six and ten vertices, C68 is a cyclic polytope in
dimension six with eight vertices, C1011 is cyclic polytope in dimension ten with
eleven vertices, and, Cro6 is the cross polytope in 6 dimension, [I8]. The test
column of Table [I| shows these systems along with the number of variables and the
number of inequalities for each of them. We implemented the MPR algorithm with
two different approaches: iterative approach and divide and conquer approach. In

13

http://www.bpaslib.org/

Test (var,ineq) ‘ MPR-itr | MPR-rec ‘ CDD ‘ Maple Maple-MPR

S24 (24,25) 16 41 411 6485 3040
S35 (35,36) 205 177 2169 57992 | 9840
Crob (6,64) 28 29 329 246750 | 8610
C56 (5,6) 1 1 13 825 140
C68 (6,16) 1 1 866 20154 | 650
C1011 (10,11) | 95 92 >1h >1h >1h
C510 (5,42) 23 22 7674 6173 6070
T1 (5,10) 7 7 142 7974 1400
T2 (10,12) 109 112 122245 | 3321217 | 13330
T3 (7,10) 26 26 8207 117021 | 2900
T4 (10,12) 368 370 1177807 | >1h 26650
T5 (5,11) 7 7 75 8229 1650
T6 (10,20) 26591 26156 >1h >1h >1h
T7 (9,19) 162628 | 158569 | >1h >1h >1h
T8 (8,19) 21411 20915 >1h >1h >1h
T9 (6,18) 1281 1263 77372 | >1h 267920

Table 1: Running time (in milliseconds) table for a set of examples, varying in
the number of variables and inequalities, collected on a system with Intel-i7-7700T

4-core processor, clocking at 3.8 GHz.
both implementations, we use dense representation for storing linear inequalities.

In the first method, we use unrolled linked lists to encode linear inequality systems.
Indeed, using this data structure, we are able to store an array of inequalities in
each node of linked list and we can improve data locality. However, we use simple
linked list in the divide and conquer version to save time on dividing and joining
lists. Although both these methods have shown quite similar and promising results
in terms of running time, we anticipate to get better results if we combine unrolled
linked lists with the divide and conquer method while using a varying threshold
for recursion as the algorithm goes on. Columns MPR-itr and MPR-rec of the
Table (1] illustrates the running time (in milliseconds) of these implementations on
a configuration with Intel-i7-7700T (4 cores, 8 threads, clocking at 3.8 GHz). Also,
columns CDD, Maple, and Maple-MPR are corresponding to running times of the
Fourier algorithm in the CDD library, which uses LP for redundancy elimination,
the function PolyhedralSets:-Project of Maple, and, an implementation of our
algorithm in the Maple programming language, on the same system, respectively.

Using divide and conquer method, we have been able to parallelize our program,
with Cilk [4]. We call this algorithm Parallel Minimal Projected Representation
(PMPR). Table [2] presents the running time (in milliseconds) and speedup of the
multi-core version of the algorithm. The columns PMPR-1, PMPR-4, PMPR-8, and,
PMPR-12 demonstrate the running time of the multi-core program on a system with
Intel-Xeon-X5650 (12 cores, 24 threads, clocking at 2.6GHz), using 1, 4, 8, and
12 Cilk workers, respectively. The numbers in brackets show the speedup we gain
using multi-threading.

14

[Test | PMPR-1 | PMPR-4 [PMPR-8 [PMPR-12 |

S21 |67 71 (09x) |73 (00x) |8 (08x)
S35 | 291 308 (09x) |30 (09x) 375 (0.7x)
Cro6 | 54 15 (12 x) | 36 15x) | 34 (15 x)
C56 |2 3 (0.6 %) | 3 06%) (12 (01x)
C68 8 7 (I.l1x) |7 (1.1x) | 19 (0.4 x)
C1011 | 176 62 (28x%) |47 (37x) |53 (33x)
C510 | 38 33 (Llx) |34 (1L1x) |40 (09x)
TT | 13 8 16x) |9 ITdx) |17 (07 x)
T2 [205 67 (G0x) |5 GB7x |5 (35x%)
T3 | 48 20 (24x) |18 (26x) |20 (24x)
T4 | 635 207 (33x) | 141 (48x) | 126 (54 x)
5 | 14 9 5% [10 (13x) |11 (l2x)
T6 | 44262 | 12995 (34 x) | 6785 (65 x) | 5163 (3.5 %)
T7 | 282721 | 78176 (3.6 x) | 48048 (5.8 x) | 35001 (7.8 x)
TS | 41067 | 10669 (38x) | 5680 (7.2 x) | 4471 (9.1 x)
T9 | 2407 712 (32x) | 491 (48x) | 48 (53 %)

Table 2: Running time (in milliseconds) table for our set of examples, with different
number of Cilk workers, collected on a system Intel-Xeon-X5650 and 12 CPU cores,

ocking at 2.6GHz.
? Gonclusion and Related works

As we previously discussed, removing redundant inequalities during the execution
of Fourier-Motzkin Elimination is the central issue towards efficiency. To our knowl-
edge, all available implementations of Fourier-Motzkin Elimination rely on linear
programming for removing all the redundant inequalities, an idea suggested in [24].
However, there are alternative algorithmic approaches relying on linear algebra.
In [T0], Chernikov proposed a redundancy test with little added work, which greatly
improves the practical efficiency of Fourier-Motzkin Elimination. Kohler proposed a
method in [25] which only uses matrix arithmetic operations to test the redundancy
of inequalities. As observed by Imbert in his work [20], the method he proposed in
this paper as well as those of Chernikov and Kohler are essentially equivalent. Even
though these works are effective in practice, none of them can remove all redundant
inequalities generated by Fourier-Motzkin Elimination.

Besides Fourier-Motzkin Elimination, block elimination is another algorithmic
tool to project polyhedra on a lower dimensional subspace. This method relies on
the extreme rays of the so-called projection cone. Although there exist efficient
methods to enumerate the extreme rays of this projection cone, like the double
description method [16] (also known as Chernikova’s algorithm [T} 26]), this method
can not remove all the redundant inequalities.

In [I], Balas shows that if certain inconvertibility conditions are satisfied, then
the extreme rays of the redundancy test cone exactly defines a minimal represen-
tation of the projection of a polyhedron. As Balas mentioned in his paper, this
method can be extended to any polyhedron.

A drawback of Balas’ work is that the necessity of enumerating the extreme
rays of the redundancy test cone in order to produce a minimal representation
of the projection proj(Q;x), which is time consuming. Our algorithm tests the

15

redundancy of the inequality ax < ¢ by checking whether (a,¢) is an extreme ray
of the redundancy test cone or not.

Another related topic to our work is the subsumption cone [I9]. Consider the
polyhedron Q given in Equation (2), define T' := {(\, o, 8) | XA = of, Nc <
B, A > 0}, where A and « are vectors of dimension m and n respectively, S is a
variable. The subsumption cone of Q) is obtained by eliminating A in 7', that is,
proj(T'; {a, }). We proved that considering a full-dimensional, pointed polyhedron,
where the first n rows of the coefficient matrix are linearly independent, the initial
redundancy test cone and the subsumption cone are equivalent. For more details,
please refer to Section [8.7]

Given a V-representation of a polyhedron P, one can obtain the V-representation
of any projection of Pﬂ The double description method turns the V-representation
of the projection to its H-representation. Most existing software libraries dealing
with polyhedral sets store a polyhedron with these two representations, like the
Parma Polyhedra Library (PPL) and Polylib. In this case, it is convenient to com-
pute the projection using the block elimination method. When we are only given
the H-representation, the first thing is to compute the V-representation, which is
equivalent to the procedure of computing the initial test cone in our method. When
we need to perform successive projections, it is well-known that Fourier-Motzkin
Elimination performs better than repeated applications of the double description
method (as PPL does).

Recently, the verified polyhedron library (VPL) [6] takes advantage of paramet-
ric linear programming to project a polyhedron. Like PPL, VPL may not beat
Fourier-Motzkin Elimination when we need to perform successive projections. In
VPL, the authors rely on raytracing to remove redundant inequalities. This is an
efficient way for removing redundancies, but this cannot remove them all, thus Lin-
ear Programming (LP) is still needed. As pointed out in [27], raytracing is effective
when there are not many redundancies; unfortunately, Fourier-Motzkin Elimination
typically generates lots of redundancies.

Another modern library dealing with polyhedral sets computation is the Nor-
maliz library [§]. In this library, Fourier-Motzkin Elimination is used for conversion
between different descriptions of polyhedral sets. This is a different strategy than
the one of our paper. As discussed in the introduction, we are motivated here
by performing successive projections as required in the analysis, scheduling and
transformation of for loop nests of computer programs.

8 Proofs
8.1 Proof of Theorem [3

To prove the Theorem, we need a preliminary observation.

Lemma 11 The operations “computing the characteristic cone” and “computing
projections” commute. To be precise, we have:

CharCone(proj(Q@; x)) = proj(CharCone(Q); x).

2for example, P is generated by {(1,2,3,4)%,(2,3,4,5)%,(2,3,7,9)t}, the projection of P onto
the last two coordinates is generated by {(3,4)%, (4,5), (7,9)!}

16

Proof > By the definition of the characteristic cone, we have CharCone(Q) =
{(u,x) | Au+ Bx < 0}, whose representation has the same left-hand side as
the one of @. The lemma is valid if we can show that the representation of
proj(CharCone(Q);x) has the same left-hand side as proj(@;x). This is obvious
with the Fourier-Motzkin Elimination procedure. <
Proof > By definition, the polar cone (HomCone(proj(Q;x))* is equal to

{v.w0) | Iy"s vol[x", Zrast)” <0,V (X, Z1ast) € HomCone(proj(Q;x))}.

This claim follows immediately from: (HomCone(proj(Q;x))* = proj(W% {v,vg}).
We shall prove this latter equality in two steps.

(D) For any (v, =) € proj(W?; {v,vo}), we need to show that [v', —0g][x’, Zjast]? <
0 holds when (X, Z1ast) € HomCone(proj(Q;x)). Remember that we assume that @
is pointed. Observe that HomCone(proj(Q;x)) is also pointed. Therefore, we only
need to verify the desired property for the extreme rays of HomCone(proj(Q;x)),
which either have the form (s, 1) or are equal to (s,0) (Theorem [I)). Before con-
tinuing, we should notice that since (v, 7o) € proj(W?; {v,vo}), there exists W such
that {[v,w'|B, "4y = 0, - [, W'| By 'co + Ty > 0, [v,w'|B, ' > 0}. Cases 1 and
2 below conclude that (v, —7y) € HomCone(proj(Q; x))* holds.

Case 1: For the form (s,1), we have s € proj(Q;x). Indeed, s is an extreme
point of proj(Q;x). Hence, there exists @ € QP, such that we have Au+ Bs < c.
By construction of Q°, we have Agi+ Bys' < ¢g, where s’ = [s', 5,41, ..., ;]! with
Sq+1 = -+ = Sy = 0. Therefore, we have: [v,w'|By'Agu + [v!,w!|By ' Bps’ <
[v',w'|B;y ' co. This leads us to v's = [v!,w']s’ < [v!,W'|B; ¢y < Tp. Therefore,
we have [V, —0g][s’, T1ast]? < 0, as desired.

Case 2: For the form (s, 0), we have s € CharCone(proj(Q;x)) = proj(CharCone(Q); x).
Thus, there exists @ € QP such that Au + Bs < 0. Similarly to Case 1, we
have [Vt,Wt}BO_IAOﬁ + [Vt,Wt}BO_IBOS’ < [Vt,Wt]Bo_lo. Therefore, we have V's =
[V, w']s' < [v!,w']|B; 0 = 0, and thus, we have [V, —T|[s, T1ast]* < 0, as desired.

(C) For any (¥,7,) € HomCone(proj(Q;x))*, we have [y, 7,][x!, Z1ast]? < 0
whenever we have (X, T1a5t) € HomCone(proj(Q;x)). For any X € proj(Q; x), we have
y'x < -7, since (X,1) € HomCone(proj(Q;x)). Therefore, we have y'x < —7,, for
all x € proj(Q;x), which makes the inequality ¥'x < —7, redundant in the system
{Au + Bx < c}. By Farkas’ Lemma (see Lemma , there exists p > 0,p € Q™
and A > 0 such that p’A = 0, ¥ = p'B, 7, = p’c + A. Remember that 4y = A,
By = [B,B’], cg = c. Here B’ is the last m — ¢ columns of By consisting of
€441s---,€m. Let W =p'B’. We then have

{ptAO = 07 [ytawt] = ptBOa 7g0 2 ptCOap Z O},
which is equivalent to
{pt = [ytawt]B(;17 [Vt7Wt]BalA0 =0,
~ 7o 2 [¥", W' By 'eo, [y, W]y ' > 0}

Therefore, (¥, W, —7,) € W°, and (¥, —7,) € proj(W% {v,vo}). From this, we
deduce that (¥,7,) € proj(W% {v,vo}) holds. <

17

8.2 Proof of Lemma

To distinguish from the construction of P(Q), we rename the variables v, w, vy as
Vu, Wu, Vu, Wwhen constructing W° and computing the test cone Py,(Q). That is,
we have Pyu(Q) = proj(W% {vu,vu}), where W0 is the set of all (vy, Wy, v4) €
Q7 x QM1 x Q satisfying

{(Vu, Wu, vu) | [Vﬁawfl]BJlA =0, —[VZ,WUBJlC +uy >0,

[V Wa]Bg ' > 0},

while we have P(Q) = proj(W;{v,vg}) where W is the set of all (v, w,vg) €
Q" x Q™" x Q satisfying {(v,w,vo) | — [v,w'A; c+wvy >0, [v, WA > 0}.
Proof > By Step |1 of Algorithm [1} [v*, w!]A;'A = v? holds whenever (v, w,vg) €

W. Rewrite v as vt = [vi vi], where v; and va are the first p and last n — p

variables of v. We have [v!,w/|A;'A = vi and [v!,w']A;'B = vb. Similarly,
we have [vl, w!]By'A = 0 and [vi, w!]B; B = vl whenever (vy, Wy, vy) € W°.
This lemma holds if we can show Py, = P|v,=0. We prove this in two steps.

(C) For any (Vy,Tu) € Pu(Q), there exists Wy, € Q™™ ¢ satistying (Vy, Wy, Uy) €
WO. Let [v!,w'] := [v},,W.,]By Ao, where ¥ = [v},¥5] with v, € Q, v, € Q"7
and W € Q™™". Then, v} = [v,,w,]By'A = 0 and v = [¥,,W,|B;'B = ¥4
due to (Vy, Wy, Uu) € WY, Let Ty = Uy, it is easy to verify that (V,w,vy) € W.
Therefore, (0,Vy,Tu) = (V,70) € P(Q).

(D) For any (0,V2,7g) € P(Q), there exists W € Q™" satisfying (0, Vs, W,7y) €
W. Let (Vu,Wu) := (0,V2,W)A; ' By. We have v, = (0,2, W)A;'B = ¥5. Let
Ty = D, it is easy to verify (Vy, Wy, 0u) € WY. Therefore, (V2,7g) = (Vu,Vu) €

Pu(Q). <

8.3 Proof of Lemma [Tl

Proof > From the properties of extreme rays, see Section we know that when r

is an extreme ray, there exists a sub-matrix A’ € QU ~Y*" of A, such that A'r = 0.
This means that r is in the null-space of A’. Thus, the claim follows by proposition
6.6 of [32]. <

8.4 Proof of Lemma

Proof > To analyze the complexity of the DD method after adding ¢ inequali-
ties, with n < t < m, the first step is to partition the extreme rays at the t — 1-
iteration, with respect to the newly added inequality. Note that we have at most
(t — 1)L2] extreme rays (Equation) whose coefficients can be bounded over by
(n — 1)"| A=Y (Lemma [7) at the t — l-iteration. Hence, this step needs at
most Oy := (t — 1)L3) x n x M(log((n — 1)*||A||2(*~1)) < O(tL5In2Fepi+e) bit
operations. After partitioning the vectors, the next step is to check adjacency for
each pair of vectors. The cost of this step is equivalent to computing the rank of

a sub-matrix A’ € Q*~Y*™ of A. This should be done for % pairs of vectors.

This step needs at most Cy := & x O((t — 1)n*F<hl+e) < Ot HinfTeplte) bit

operations. We know there are at most tL2J pairs of adjacent extreme rays. The

18

next step is to combine every pair of adjacent vectors in order to obtain a new ex-
treme ray. This step consists of n multiplications in Q of coefficients with absolute
value bounded over by (n — 1)"||A[|*®~Y) (Lemma [7) and this should be done for
at most tL2) vectors. Therefore, the bit complexity of this step, is no more than
Cs = tl5] xn x M(log((n — 1)"|| A2 =V)) < O(tL2In?<h' <), Finally, the com-
plexity of step t of the algorithm is C' := Cy + C3 + C5. The claim follows after
simplifying m - C'. <

8.5 Proof of Lemma

Proof > We analyze Algorithm [1] step by step.
Step 1: construction of Ay from A. The cost of this step can be neglected.
However, it should be noticed that the matrix Ay has a special structure. Without
loss of generality, we cam assume that the first n rows of A are linearly independent.
A 0

The matrix Ay has the following structure Ag = (A I
2 m—n

), where A; is a full

rank matrix in Q"™ and A, € QX"
Step 2: construction of the cone W. Using the structure of the matrix Ag, its
ATt o
inverse can be expressed as A - ! L . Also, from Section [2.4] we
—As AT Lnen
have ||[A7Y| < (vn— 1|JA1])"~!. Therefore, |4y < n"s" ||A]|%, and Ay el <
n"z" || A||"(lc|| + (m — n)||c||. That is, height(Ay') € O(n'*<h) and height(A;'c) €
O(m€ + n'*€h). As a result, height of coefficients of W can be bounded over by
O(me + n'*eh).
To estimate the bit complexity, we need the following consecutive steps:

- Computing Ay ! which requires

O(n?T1Hp1*¢) 1 O((m — n)n* M(max(height(As), height(AT1))))

<O(mnfT1Hep1T€) bit operations;

- Constructing W := {(v,w,vg) | — [v},w!]Ag'c +vo > 0, [vl, w']A;" > 0}
requires at most
Cy :=0(m ' Ten? T Hepl+e) 1 O(mnM(height(Ay !, c)))

+0((m —n)h) < O(m'Ten?T<FLa1T) bit operations.
Step 3: projecting W and finding the initial redundancy test cone. Following
Lemma [5, we obtain a representation of proj(W;{v,vp}) through finding extreme
rays of the corresponding projection cone.
Let B = (—AA7Y)" € Q™™™ and gt be the last m — n elements of (47 'c)".
Then, the projection cone can be represented by:

E
C={yeQ""|y'"| g |=0y=>0}

Imfn

19

Note that yn+2,- .-, Ym+1 can be solved from the system of equations in the repre-
sentation of C'. We substitute them in the inequalities and obtain a representation
of the cone C’, given by:

’ / n+1 1t E /
C'={yeQ" |y o <0,y >0}

In order to find the extreme rays of the cone C', we can find the extreme rays of
the cone C’ and then back-substitute them into the equations to find the extreme
rays of C. Applying Algorithm |5 to C’, we can obtain all extreme rays of C’, and
subsequently, the extreme rays of C. The cost estimate of this step is bounded
over by the complexity of Algorithm [5|with C’ as input. This operation requires at
most Cy := O(m"™+3(n + 1)+ max(height(E, g*))!+¢) < O(m™*3+¢(n + 1)0+cpl+e)
bit operations. The overall complexity of the algorithm can be bounded over by:
Cy + Cy < O(m"3+¢(n + 1)%+<h1+€). Also, by Lemma [7| and Lemma (8, we know
that the cone C' has at most O(anTHJ) distinct extreme rays, each with height no
more than O(mn?T¢h). That is, proj(W?; {v,vp}) can be represented by at most
O(m!*3)) inequalities, each with a height bound of O(mn?*¢h). <

8.6 Proof of Lemma [10]

Proof > The first step is to multiply the matrix M and the vector (t,%p). Let dj,
and cps be the number of rows and columns of M, respectively, thus M € Qimxem
We know that M is the coefficient matrix of proj(W?°, {v,vo}). Therefore, after
eliminating p variables ¢y = ¢+ 1, where ¢ = n — p and dy; < m?. Also, we
have height(M) € O(mn?T<h). With these specifications, the multiplication step
and the rank computation step need O(m?2n?+t<h'*¢) and O(m? (¢+1)?+<h!*e) bit
operations, respectively, and the claim follows after simplification. <

8.7 Subsumption cone

Lemma 12 The subsumption cone of Q) equals to its initial redundancy test cone

P.

Proof > Let A := [Vt,Wt]Aal and 8 = Uy, we prove the lemma in two steps.

(C) For any («, 8) in the subsumption cone proj(T; {«a, 5}), there exists A € Q™
satisfying (A, o, 8) € T. Remember that Ay = [A, A’], where A’ = [e,41,...,€n)
with e; being the i-th canonical basis of Q™ for i : n +1 < i < m, we have
AalA = le1,...,e,] with e; being the i-th canonical basis of Q" for i : 1 < i < n.
Hence, o' = MA = [, W/]A;'A = ¥'. Also, we have [/, W']A;'c < 8 =
To, [V!,W']Ag ! > 0. Therefore, (o, 8) = (¥,To) € proj(W; {v,vo}).

(D) For any (V,7o) in the initial redundancy test cone proj(W;{v,vo}), there
exists w € Q™" satisfying (v, W, vg) € proj(W;{v,v}). Let @« = V. Then, o =
vt = [, WA A = MA, Ve = [, %A 'c <Tp = f and of = [¥, WA, >
0. Therefore, (V,7g) = (a,) € proj(T;{e, 8}). <

20

References

[1]

2]

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

Egon Balas. Projection with a minimal system of inequalities. Computational
Optimization and Applications, 10(2):189-193, 1998.

C. Bastoul. Code generation in the polyhedral model is easier than you think.
In Proceedings of the 13th International Conference on Parallel Architectures
and Compilation Techniques, PACT ’04, pages 7-16, Washington, DC, USA,
2004. IEEE Computer Society.

M. Benabderrahmane, L. Pouchet, A. Cohen, and C. Bastoul. The polyhe-
dral model is more widely applicable than you think. In Proceedings of the
19th joint European conference on Theory and Practice of Software, interna-
tional conference on Compiler Construction, CC’10/ETAPS’10, pages 283-303,
Berlin, Heidelberg, 2010. Springer-Verlag.

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall,
and Y. Zhou. Cilk: An efficient multithreaded runtime system. SIGPLAN
Not., 30(8):207-216, August 1995.

U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practi-
cal automatic polyhedral parallelizer and locality optimizer. SIGPLAN Not.,
43(6):101-113, June 2008.

Sylvain Boulme, Alexandre Marechaly, David Monniaux, Michael Perin, and
Hang Yu. The verified polyhedron library: an overview. pages 9-17, 2018.

Winfried Bruns and Bogdan Ichim. Normaliz: algorithms for affine monoids
and rational cones. Journal of Algebra, 324(5):1098-1113, 2010.

Winfried Bruns, Tim Romer, Richard Sieg, and Christof Soger. Normaliz 3.0.
2008.

Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza,
Ning Xie, and Yuzhen Xie. The basic polynomial algebra subprograms. In
Mathematical Software - ICMS 201/ - 4th International Congress, Seoul, South
Korea, August 5-9, 2014. Proceedings, pages 669-676, 2014.

Sergei Nikolaevich Chernikov. Contraction of systems of linear inequalities.
Doklady Akademii Nauk SSSR, 131(3):518-521, 1960.

Natal’ja V. Chernikova. Algorithm for finding a general formula for the non-
negative solutions of a system of linear inequalities. Zhurnal Vychislitel’noi
Matematiki i Matematicheskoi Fiziki, 5(2):334-337, 1965.

George B Dantzig. Fourier-motzkin elimination and its dual. Technical report,
1972.

P. Feautrier. Dataflow analysis of array and scalar references. International
Journal of Parallel Programming, 20, 1991.

21

[14]

[16]

[17]

[18]

[19]

[23]

[24]

[25]

[26]
[27]

Paul Feautrier. Automatic parallelization in the polytope model. In The Data
Parallel Programming Model: Foundations, HPF Realization, and Scientific
Applications, pages 79-103, London, UK, UK, 1996. Springer-Verlag. http:
//dl.acm.org/citation.cfm?id=647429.723579.

Komei Fukuda. The CDD and CDDplus homepage. https://www.inf .ethz.
ch/personal/fukudak/cdd_home/.

Komei Fukuda and Alain Prodon. Double description method revisited. In
Combinatorics and computer science, pages 91-111. Springer, 1996.

T. Grosser, H. Zheng, R. Aloor, A. Simbiirger, A. Groflinger, and L. Pouchet.
Polly - polyhedral optimization in llvm. In First International Workshop on
Polyhedral Compilation Techniques (IMPACT’11), Chamonix, France, April
2011.

Martin Henk, Jiirgen Richter-Gebert, and Giinter M Ziegler. 16 basic properties
of convex polytopes. Handbook of discrete and computational geometry, pages
255-382, 2004.

Tien Huynh, Catherine Lassez, and Jean-Louis Lassez. Practical issues on the
projection of polyhedral sets. Annals of mathematics and artificial intelligence,
6(4):295-315, 1992.

Jean-Louis Imbert. Fourier’s elimination: Which to choose? In PPCP, pages
117-129, 1993.

Rui-Juan Jing and Marc Moreno Maza. Computing the integer points of a
polyhedron, I: algorithm. In Computer Algebra in Scientific Computing - 19th
International Workshop, CASC 2017, Beijing, China, September 18-22, 2017,
Proceedings, pages 225-241, 2017.

Rui-Juan Jing and Marc Moreno Maza. Computing the integer points of a
polyhedron, II: complexity estimates. In Computer Algebra in Scientific Com-
puting - 19th International Workshop, CASC 2017, Beijing, China, September
18-22, 2017, Proceedings, pages 242-256, 2017.

Narendra Karmarkar. A new polynomial-time algorithm for linear program-
ming. In Proceedings of the sizteenth annual ACM symposium on Theory of

computing, STOC 84, pages 302-311, New York, NY, USA, 1984. ACM.

Leonid Khachiyan. Fourier-motzkin elimination method. In Christodoulos A.
Floudas and Panos M. Pardalos, editors, Encyclopedia of Optimization, Second
Edition, pages 1074-1077. Springer, 2009.

David A. Kohler. Projections of convex polyhedral sets. Technical report,
California Univ. at Berkeley, Operations Research Center, 1967.

Hervé Le Verge. A note on Chernikova’s algorithm. PhD thesis, INRIA, 1992.

Alexandre Maréchal and Michaél Périn. Efficient elimination of redundancies
in polyhedra by raytracing. In International Conference on Verification, Model
Checking, and Abstract Interpretation, pages 367-385. Springer, 2017.

22

http://dl.acm.org/citation.cfm?id=647429.723579
http://dl.acm.org/citation.cfm?id=647429.723579
https://www.inf.ethz.ch/personal/fukudak/cdd_home/
https://www.inf.ethz.ch/personal/fukudak/cdd_home/

[28] Peter McMullen. The maximum numbers of faces of a convex polytope. Math-
ematika, 17(2):179-184, 1970.

[29] David Monniaux. Quantifier elimination by lazy model enumeration. In Inter-
national Conference on Computer Aided Verification, pages 585-599. Springer,
2010.

[30] Arnold Schonhage and Volker Strassen. Schnelle multiplikation grofier zahlen.
Computing, 7(3-4):281-292, 1971.

[31] Alexander Schrijver. Theory of linear and integer programming. John Wiley &
Somns, Inc., New York, NY, USA, 1986.

[32] Arne Storjohann. Algorithms for matriz canonical forms. PhD thesis, Swiss
Federal Institute of Technology Zurich, 2000.

[33] Marco Terzer. Large scale methods to enumerate extreme rays and elementary
modes. PhD thesis, ETH Zurich, 2009.

[34] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gémez, C. Tenllado, and
F. Catthoor. Polyhedral parallel code generation for CUDA. TACO, 9(4):54,
2013.

Appendix: Double description method

The double description method works in an incremental manner. Denoting by
Hy, ..., H,, the half-spaces corresponding to the inequalities of the H-representation
of C, we have C = Hy N --- N H,,. Let 1 <i < m and assume that we have com-
puted the extreme rays of the cone C*~1 := H; N--- N H;_;. Then the i-th iteration
of the DD method deduces the extreme rays of C? from those of C*~1 and H;.

Assume that the half-spaces Hy, ..., H,, are numbered such that H; is given by
A;x < 0, where A; is the i-th row of the representing matrix A. We consider the
following partition of Q":

Hf ={xeQ"| A4x >0}, H) = {x € Q" | Aixx = 0} and H; = {x €

Assume that we have found the DD-pair (A=, R*=1) of C*~1. Let J be the
set of the column indices of R‘~1. We use the above partition {H;", H?, H; } to
partition J as follows:

Jr={jeJ|r;eH},J)={jeJ|r;e Hand J; ={jeJ|r; € H },
where {r; | j € J} is the set of the columns of R*~!, hence the set of the extreme
rays of C?71,

For future reference, let us denote by partition(J, A;) the function which returns
J+,J0 J~ as defined above. The proof can be found in [16].

Lemma 13 (Double description method) Let J' := JTUJ°U(JT x J7). Let
R be the (n x |J'|)-matriz consisting of

e the columns of R with index in J+ U JO, followed by

o the vectors ' (; jiy for (j,7") € (J* x J7), where

23

(g1 = (Airj)rj — (Airjo)r;,
Then, the pair (A%, RY) is a DD pair of C".

The most efficient way to start the incremental process is to choose the largest
sub-matrix of A with linearly independent rows; we call this matrix A°. Indeed, de-
noting by C? the cone with A° as representation matrix, the matrix A is invertible
and its inverse gives the extreme rays of C?, that is:

ExtremeRays(C?) = (AO)_l.

Therefore, the first DD-pair that the above incremental step should take as input
is (A, (A%) 7).

The next key point towards a practically efficient DD method is to observe that
most of the vectors r'(; j/y in Lemma are redundant. Indeed, Lemma leads
to a construction of a generating matrix of C' (in fact, this would be Algorithm
where Lines 13 and 16 are suppressed) producing a double exponential number of
rays (w.r.t. the ambient dimension n) whereas Equation guarantees that the
number of extreme rays of a polyhedral cone is singly exponential in its ambient
dimension. To deal with this issue of redundancy, we need the notion of adjacent
extreme rays.

Definition 2 (Adjacent extreme rays) Two distinct extreme rays r and v’ of
the polyhedral cone C are called adjacent if they span a 2-dimensional face of C'. E|

The following lemma shows how we can test whether two extreme rays are adjacent
or not. The proof can be found in [16].

Proposition 1 (Adjacency test) Let r and v’ be two distinct rays of C. Then,
the following statements are equivalent:

1. r and v’ are adjacent extreme rays,
2. r and v’ are extreme rays and rank(Acp)nery) = n — 2,

3. if v is a ray of C with {(r)N¢(x") C ((x"), then r” is a positive multiple of
either r orr’.

It should be noted that the second statement is related to algebraic test for extreme
rays while the third one is related to the combinatorial test.

Based on Proposition [T} we have Algorithm [] for testing whether two extreme
rays are adjacent or not.

The following lemma explains how to obtain (A%, RY) from (A*~!, R*=1), where
A1 (resp. AY) is the sub-matrix of A consisting of its first i — 1 (resp.) rows.
The double description method is a direct application of this lemma, see [16] for
details.

Lemma 14 As above, let (A*"1, R"=1) be a DD-pair and denote by J be the set
of indices of the columns of R*=t. Assume that rank(A*~') = n holds. Let J' :=
J= U JY U Adj, where Adj is the set of the pairs (j,5') € J* x J~ such that r;,
and rj are adjacent as extreme rays of C*~', the cone with A™™' as representing
matriz. Let R® be the (n x |J'|)-matriz consisting of

3We do not use the minimal face, as it used in the main reference because it makes confusion.

24

Algorithm 4 AdjacencyTest

1: Input: (A4,r,r’), where A € Q™ " is the representation matrix of cone C, r
and r’ are two extreme rays of C
Output: true if r and r’ are adjacent, false otherwise
s:= Ar, s’ := Ar’
let ¢(r) and ¢(r') be set of indices of zeros in s and s’ respectively
¢:=((r)N¢(r')
if rank(A;) =n — 2 then
return true
else
return false
end if

© % N>k

._.
=

e the columns of R with index in J~ U JO, followed by

o the vectors r'(; ;) for (j,j') € (J* x J7), where
v = (Airj)ry — (Airy)r;,

Then, the pair (A, RY) is a DD pair of C*. Furthermore, if R*~! is a minimal
generating matrixz for the representation matriz A1, then R' is also a minimal
generating matriz for the representation matriz A*.

Using Proposition [1] and Lemma [14] we can obtain Algorithm E| for computing
the extreme rays of a cone.

4In this algorithm, A’ shows the representation matrix in step i

25

Algorithm 5 DDmethod

—= = =
e e

13:
14:
15:
16:
17:
18:
19:
20:

Input: a matrix A € Q™*", a representation matrix of a pointed cone C

Output: R, the minimal generating matrix of C
let K be the set of indices of A’s independent rows
AO = AK
RO := (A%~
let J be set of column indices of R?
while K # {1,--- ,m} do
select a A-row index i ¢ K
J+, JO J~ = partition(J, 4;)
add vectors with indices in J* and J° as columns to R?
forpe JT do
for n € J~ do
if AdjacencyTest(A""!,rp,1,) = true then
Fnew := (Airp)ry, — (Airy)r)
add rpew as columns to R’
end if
end for
end for
let J be set of indices in R?
end while

26

	Introduction
	Background
	Polyhedral cones and polyhedra
	The double description method
	Fourier-Motzkin elimination
	Cost model

	Revisiting Balas' method
	Minimal representation of the projected polyhedron
	Complexity estimates
	Experimentation
	Conclusion and Related works
	Proofs
	Proof of Theorem 3
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Lemma 10
	Subsumption cone

